
T H E S E C O N D I N T E R N A T I O N A L C O N F E R E N C E O N T H E T H E O R Y O F I N F O R M A T I O N R E T R I E V A L ( I C T I R 2 0 0 9 )

Modeling score distributions in information retrieval

Avi Arampatzis • Stephen Robertson

Received: 10 August 2010 / Accepted: 10 August 2010 / Published online: 26 August 2010
� Springer Science+Business Media, LLC 2010

Abstract We review the history of modeling score distributions, focusing on the mixture

of normal-exponential by investigating the theoretical as well as the empirical evidence

supporting its use. We discuss previously suggested conditions which valid binary mixture

models should satisfy, such as the Recall-Fallout Convexity Hypothesis, and formulate two

new hypotheses considering the component distributions, individually as well as in pairs,

under some limiting conditions of parameter values. From all the mixtures suggested in the

past, the current theoretical argument points to the two gamma as the most-likely universal

model, with the normal-exponential being a usable approximation. Beyond the theoretical

contribution, we provide new experimental evidence showing vector space or geometric

models, and BM25, as being ‘friendly’ to the normal-exponential, and that the non-con-

vexity problem that the mixture possesses is practically not severe. Furthermore, we review

recent non-binary mixture models, speculate on graded relevance, and consider methods

such as logistic regression for score calibration.
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1 Introduction

Current best-match retrieval models calculate some kind of score per collection item which

serves as a measure of the degree of relevance to an input request. Scores are used in ranking

retrieved items. Their range and distribution varies wildly across different models making

them incomparable across different engines (Robertson 2007), even across different

requests on the same engine if they are influenced by the length of requests. Even most
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probabilistic models do not calculate the probability of relevance of items directly, but some

order-preserving (monotone or isotone) function of it (Nottelmann and Fuhr 2003).

For single-collection ad-hoc retrieval, the variety of score types is not an issue; scores

do not have to be comparable across models and requests, since they are only used to rank

items per request per system. However, in advanced applications, such as distributed

retrieval, fusion, or applications requiring thresholding such as filtering, topic detection and

tracking, or recall-oriented search, some form of score normalization or analysis is

imperative. In the first two applications, several rankings (with non-overlapping and

overlapping sets of items respectively) have to be merged or fused to a single ranking.

Here, score normalization is an important step (Callan 2000). In practice, while many users

never use meta-search engines directly, most conventional search engines have the prob-

lem of combining results from many discrete sub-engines. For example, blending images,

text, inline answers, stock quotes, and so on, has become common.

In filtering and topic detection/tracking, bare scores give no indication on whether to

retrieve an incoming document or not. Usually a user model is captured into some eval-

uation measure. Some of these measures can be optimized by thresholding the probability

of relevance at some specific level (Lewis 1995), thus a method of normalizing scores into

probabilities is needed. Additionally, thresholding has turned out to be important in recall-

oriented retrieval setups, such as legal or patent search, where ranked retrieval has a

particular disadvantage in comparison with traditional Boolean retrieval: there is no clear

cut-off point where to stop consulting results (Oard et al. 2009). Again, normalizing scores

to expected values of a given effectiveness measure allows for optimal rank thresholding.

In any case, the optimal threshold depends on the effectiveness measure being used—there

is no single threshold suitable for all purposes—and some of the measures require more

complete distributional information on the relevant and non-relevant items than merely the

probability of relevance.

Simple approaches, e.g. range normalization based on minimum and maximum scores,

are rather naive, considering the wild variety of score outputs across search engines,

because they do not take into account the shape of score distributions (SDs). Although

these methods have worked reasonably well for merging or fusing results (Lee 1997),

advanced approaches have been seen which try to improve normalization by investigating

SDs. Such methods have been found to work at least as well as the simple ones (or in some

cases better) in the context of fusion (Manmatha et al. 2001; Fernández et al. 2006a, b),

and better in distributed retrieval (Arampatzis and Kamps 2009). They have also been

found effective for thresholding in filtering (Arampatzis et al. 2000; Arampatzis and van

Hameren 2001; Zhang and Callan 2001; Collins-Thompson et al. 2002) or thresholding

ranked lists in recall-oriented setups (Arampatzis et al. 2009).

In this study, we review the history of modeling SDs in Information Retrieval (IR),

focusing on the currently most popular model, namely, the mixture of normal-exponential,

by investigating the theoretical as well as the empirical evidence supporting its use. We

discuss conditions which any valid—from an IR perspective—binary mixture model

should satisfy, such as the Recall-Fallout Convexity Hypothesis, and formulate new

hypotheses considering the component distributions individually as well as in pairs.

Although our contribution is primarily theoretical, we provide new experimental evidence

concerning the range of retrieval models that the normal-exponential gives a good fit, and

try to quantify the impact of non-convexity that the mixture possesses. Furthermore, we

review recent non-binary approaches, speculate on graded relevance and on the use of

logistic regression as a score calibration method. We formulate yet unanswered questions

which should serve as directions for further research.
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2 Modeling score distributions

Under the assumption of a binary relevance, classic attempts model SDs, on a per-request

basis, as a mixture of two distributions: one for relevant and the other for non-relevant

documents (Swets 1963; Swets 1969; Bookstein 1977; Baumgarten 1999; Arampatzis and

van Hameren 2001; Manmatha et al. 2001). Given the two component distributions and

their mix weight, the probability of relevance of a document given its score can be

calculated straightforwardly (Arampatzis and van Hameren 2001; Manmatha et al. 2001),

essentially allowing the normalization of scores into probabilities of relevance. Further-

more, the expected numbers of relevant and non-relevant documents above and below any

rank or score can be estimated, allowing the calculation of precision, recall, or any other

traditional measure at any given threshold enabling its optimization (Arampatzis et al.

2009). Assuming the right component choices, such methods are theoretically ‘clean’ and

non-parametric.

Various combinations of distributions have been proposed since the early years of IR—

two normal of equal variance (Swets 1963), two normal of unequal variance or two

exponential (Swets 1969), two Poisson (Bookstein 1977), two gamma (Baumgarten

1999)—with currently the most popular model being that of using a normal for relevant

and an exponential for non-relevant, introduced by Arampatzis et al. (2000); Arampatzis

and van Hameren 2001 and followed up by Manmatha et al. (2001), Zhang and Callan

(2001), Collins-Thompson et al. (2002) and others. For a recent extended review and

theoretical analysis of those early proposals, we refer the reader to Robertson (2007). The

latest improvements of the normal-exponential model use truncated versions of the com-

ponent densities, trying to deal with some of its shortcomings (Arampatzis et al. 2009). In

Sect. 3 we will focus on the original normal-exponential model. Then, in Sects. 4 and 5 we

will see conditions that SD models should satisfy under some hypotheses. In Sect. 6, we

will analyze the most recently proposed mixture model which uses a gamma for non-

relevant and a mixture of n normals for relevant (Kanoulas et al. 2009). In Sect. 7, we will

note practical problems and limitations of mixture models irrespective of the component

choices.

Modeling SDs without reference to relevance seems to overcome some of the practical

problems of mixture models. A recent attempt models aggregate SDs of many requests, on

per-engine basis, with single distributions (Fernández et al. 2006a, b); this enables nor-

malization of scores to probabilities—albeit not of relevance—comparable across different

engines. The approach was found to perform better than the simple methods in the context

of fusion (Fernández et al. 2006a, b). Nevertheless, it is not clear—if it is even possible—

how using a single distribution can be applied to thresholding, where for optimizing most

common measures a reference to relevance is needed. We will investigate such methods in

Sect. 8.

One possible approach to modeling SDs is to first transform the scores into some form

which exhibits better distributional properties. In principle any monotonic transformation

of the scores produced by a system (which necessarily leaves the ranking unchanged)

would be a candidate for this process. Thus one might for example transform a score which

appeared to give a lognormal distribution for some relevance class, into one which gave a

normal distribution, by taking the log of the score. This line has not in general been

followed in the literature, and is not pursued here. However, we could go further, and

attempt to transform the score into a probability of relevance. For at least some purposes

for which knowledge of SDs would otherwise be useful, a calibrated probability of rele-

vance would serve equally well. For example if the task is optimising a threshold for
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certain effectiveness measures, a probability of relevance of each ranked document would

provide a suitable mechanism. One approach along these lines is provided by logistic

regression, discussed further in Sect. 9.

3 The normal-exponential model

In this section, we review the normal-exponential model. We investigate the theoretical as

well as the empirical evidence and whether these support its use.

3.1 Normal for relevant

A theorem by Arampatzis and van Hameren 2001 claims that the distribution of relevant

document scores converges to a Gaussian central limit (GCL) quickly, with ‘corrections’

diminishing as O(1/k) where k is the query length. Roughly, three explicit assumptions

were made:

1. Terms occur independently.

2. Scores are calculated via some linear combination of document term weights.

3. Relevant documents cluster around some point in the document space, with some

hyper-ellipsoidal density (e.g. a hyper-Gaussian) with tails falling fast enough.

Next, we re-examine the validity and applicability of these assumptions in order to

determine the range of retrieval models for which the theorem applies.

Assumption 1 is generally untrue, but see the further discussion below. Assumption 2

may hold for many retrieval models; e.g. it holds for dot-products in vector space models,

or sums of partially contributing log-probabilities (log-odds) in probabilistic models.

Assumption 3 is rather geometric and better fit to vector space models; whether it holds or

not, or it applies to other retrieval models, is difficult to say. Intuitively, it means that the

indexing/weighting scheme does its job: it brings similar documents close together in the

document space. This assumption is reasonable and similar to the Cluster Hypothesis of

van Rijsbergen (1979, Chap. 3).

Putting it all together, the proof is more likely to hold for setups combining the fol-

lowing three characteristics:

• Vector space model, or some other geometric representation.

• Scoring function in the form of linear combination of document term weights, such as

the dot-product or cosine similarity of geometric models or the sum of partially

contributing log-probabilities of probabilistic models.

• Long queries, due to the convergence to a GCL depending on query length.

This does not mean that there exists no other theoretical proof applicable to more retrieval

setups, but we have not found any in the literature.

A note on term independence. Term independence assumptions are common in the

context of probabilistic models and elsewhere, but are clearly not generally valid. This has

elicited much discussion. The following points have some bearing on the present argument:

• Ranking algorithms derived from independence models have proved remarkably

robust, and unresponsive to attempts to improve them by including dependencies.

• Making the independence assumption conditional on relevance actually makes it a little

more plausible than a blanket independence assumption for the whole collection.
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• Cooper (1991) has shown that for the simple probabilistic models, one can replace the

independence assumptions with linked dependence (that is, linked between the relevant

and non-relevant sets), and end up with the same ranking algorithms. This may be a

partial explanation for the robustness of the independence models.

• This linked dependence assumption unfortunately does not help us with the present

problem.

• Cooper et al. (1992) show that if we want to estimate an explicit, well-calibrated

probability of relevance for each document (to show to the user), then corrections need

to be made to allow for the inaccuracies of the (in)dependence assumptions.

What these points emphasise is the very strong distinction between on the one hand having

a scoring system which ranks well and on the other hand placing any stronger interpre-

tation on the scores themselves.

3.2 Exponential for non-relevant

Under a similar set of assumptions and approximations, Arampatzis and van Hameren

(2001) investigate also the distribution of non-relevant document scores and conclude that

a GCL is unlikely and if it appears it does only at a very slow rate with k (practically never

seen even for massive query expansion). Although such a theorem does not help much in

determining a usable distribution, under its assumptions it contradicts Swets’ use of a

normal distribution for non-relevant (Swets 1963, 1969).

The distribution in question does not necessarily have to be a known one. Arampatzis

and van Hameren (2001) provide a model for calculating numerically the SD of any class

of documents (thus also non-relevant) using Monte-Carlo simulation. In absence of a

related theory or a simpler method, the use of the exponential distribution has been so far

justified empirically: it generally fits well to the high-end of non-relevant item scores, but

not to all.

3.3 Normal-exponential in practice

The normal-exponential mixture model presents some practical difficulties in its applica-

tion. Although the GCL is approached theoretically quickly as query length increases,

practically, queries of length above a dozen terms are only possible through relevance

feedback and other learning methods. For short queries, the Gaussian may simply not be

there to be estimated. Empirically, using a vector space model with scores which were

unbounded above on TREC data, Arampatzis and van Hameren (2001) found usable

Gaussian shapes to form at around k = 250. k also seemed to depend on the quality of a

query; the better the query, the fewer the terms necessary for a normal approximation of

the observed distribution. Along similar lines, Manmatha et al. (2001) noticed that better

systems (in terms of average precision) produce better Gaussian shapes.

It was also shown in previous research that the right tail of the distribution of non-

relevant document scores can be very well approximated with an exponential: Arampatzis

and van Hameren (2001), Collins-Thompson et al. (2002) fit on the top 50–100, Manmatha

et al. (2001) fit on almost the top-1,000 (1,000 minus the number of relevant documents).

Arampatzis (2001) even fits on a non-uniform sample of the whole score range, but the

approach seems system/task-specific. In general, it is difficult to fit an exponential on the

whole score range. Figure 1 shows the total score densities produced by a combination of

two queries and two sub-collections using KL-DIVERGENCE as a retrieval model. Obviously,
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none of these SDs can be fitted in totality with the mixture. Candidate ranges are, in

general, [speak, ??) where speak is set at the most frequent score or above.

Despite the above-mentioned practical problems, Manmatha et al. (2001) used the

model with success, with much shorter queries and even with a scoring system which

produces scores between 0 and 1 without worrying about the implied truncation at both

ends for the normal and at the right end for the exponential. In the context of thresholding

for document filtering, with the generally unbounded scoring function BM25 and a max-

imum of 60 query terms per profile, the method performed well (2nd best, after Maximum

Likelihood Estimation) on 3 out of 4 TREC data sets (Collins-Thompson et al. 2002).

3.4 Normal-exponential fits of TREC 2004 Robust track runs

To further determine the retrieval models whose observed SDs can be captured well with a

normal-exponential mixture, we investigated all 110 submissions to the TREC 2004

Robust track. This track used 250 topics combining the ad-hoc track topics in TRECs 6–8,

with the robust track topics in TRECs 2003–2004. Table 1 shows the 20 submissions

where the mixture obtained the best fit as measured by the median upper-probability using

the v2 goodness-of-fit test. The table shows the run names; the used topic fields; the median

v2 upper probability indicating the goodness-of-fit; and the correlation between the optimal

F1@K (with K a rank) based on the qrels and on the fitted distributions. The two remaining

columns will be discussed in Sect. 4. Not surprisingly, over all runs, the 20 runs with the

best fit also tend to have better predictions of F1@K.1

Looking at the retrieval models resulting in the best fits, we see seven runs of Peking

University (icl) using a vector space model and the cosine measure. We also see 6 runs of

Sabir Research, Inc. (SABIR) using the SMART vector space model. There are 3 runs of

the University of Glasgow (uog) using various sums of document term weights in the DRF-

framework. Two runs from Indiana University (wdo) using Okapi BM25. Finally, a single
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Fig. 1 KL-divergence score densities; two queries on two collections

1 The full table is not shown here. At its bottom part, there are cases where the fits are a complete failure
(median upper probability of practically zero) and the F1@K correlation is very weak: 0.07–0.15.
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run from the Chinese Academy of Science (NLPR) using Okapi BM25, and one from

Fundazione Ugo Bordoni (fub) also using sums of document term weights in the DRF-

framework. Overall, we see support for vector space or geometrical models as being

amenable to the normal-exponential mixture, as well as BM25.

Looking at query length, we see only 3 systems using the short title statement, and 8

systems using all topic fields. Many of the systems used query expansion, either using the

TREC corpus or using the Web, leading to even longer queries. While longer queries tend

to lead to smoother SDs and improved fits, the resulting F1@K prediction seems better for

the short title queries with high quality keywords. The ‘pos2’ runs of Peking University

(icl) only index verbs and nouns, and considering only the most informative words seems

to help distinguish the two components in the mixture.

4 The Recall-Fallout Convexity Hypothesis

From the point of view of how scores or rankings of IR systems should be, Robertson

(2007) formulates the Recall-Fallout Convexity Hypothesis:

For all good systems, the recall-fallout curve (as seen from the ideal point of recall = 1,

fallout = 0) is convex.

Similar hypotheses can be formulated as conditions on other measures, e.g., the probability

of relevance should be monotonically increasing with the score; the same should hold for

smoothed precision. Although, in reality, these conditions may not always be satisfied, they

are expected to hold for good systems, i.e. those producing rankings satisfying the

probability ranking principle (PRP), because their failure implies that systems can be

easily improved as we explain next.

As an example, let us consider smoothed precision. If it declines as score increases for a

part of the score range, that part of the ranking can be improved by a simple random

re-ordering (Robertson 1969). This is equivalent of ‘forcing’ the two underlying

distributions to be uniform in that score range. This will replace the offending part of the

precision curve with a flat one—the least that can be done—improving the overall

effectiveness of the system. In fact, rankings can be further improved by reversing the

offending sub-rankings; this will force the precision to increase with an increasing score,

leading to better effectiveness than randomly re-ordering the sub-ranking.

Table 1 Twenty submissions with the best normal-exponential goodness-of-fit

Run Qry v2 (F1) c. NC Inv. Run Qry v2 (F1) c. NC Inv.

icl04pos2d d 0.228 0.742 1.0 95.76 icl04pos2t t 0.163 0.752 2.5 93.05

SABIR04FA tdn 0.214 0.650 1.0 87.57 uogRobDWR10 d 0.158 0.642 1.0 89.35

icl04pos7f tdn 0.197 0.663 2.0 93.64 wdo25qla1 tdn 0.157 0.579 4.0 83.12

icl04pos2f tdn 0.190 0.629 1.0 93.66 icl04pos2td td 0.154 0.718 1.0 95.87

SABIR04BA tdn 0.185 0.658 1.0 90.25 uogRobLWR5 tdn 0.152 0.593 1.0 90.19

NLPR04OKapi d 0.184 0.708 3.0 90.29 icl04pos7td td 0.152 0.744 1.0 95.40

SABIR04FT t 0.182 0.723 2.0 90.31 SABIR04BT t 0.149 0.712 1.0 91.08

SABIR04FD d 0.180 0.668 2.0 88.23 wdoqla1 tdn 0.149 0.637 2.0 85.66

SABIR04BD d 0.174 0.647 2.0 88.05 uogRobDBase d 0.148 0.646 1.0 88.31

icl04pos48f tdn 0.166 0.694 1.0 95.78 fub04Dg d 0.145 0.511 2.5 86.82
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Such hypotheses put restrictions on the relative forms of the two underlying distribu-

tions. Robertson (2007) investigates whether the following mixtures satisfy the convexity

hypothesis: two normals, two exponentials, two Poisson, two gamma, and normal-expo-

nenttial. From this list, the following satisfy the hypothesis: two normal (only when their

variances are equal), two exponential, two Poisson, and two gamma (for a quite wide range

of parameters but not all).

Let us consider the normal-exponential mixture which violates such conditions only

(and always) at both ends of the score range. Although the low-end scores are of insig-

nificant importance, the top of the ranking is very significant. The problem is a manifes-

tation of the fact that a normal falls more rapidly than an exponential and hence the two

density functions intersect twice. Figure 2 depicts a normal-exponential fit on score data,

together with the estimated precision and recall. The problem can be seen here as a

declining precision above score 0.25.

Let us now see how the problem is dealt with in practice. In adaptive filtering,

Arampatzis et al. (2000), Arampatzis (2001) deal with the problem by selecting as filtering

threshold the lower solution of the 2nd degree equation resulting from optimizing linear

utility measures, while Zhang and Callan (2001), Collins-Thompson et al. (2002) do not

seem to notice or deal with it. In meta-search, Manmatha et al. (2001) noted the problem

and forced the probability to be monotonic by drawing a straight line from the point where

the probability is maximum to the point [1,1]. Both procedures, although they may have

been suitable for the above tasks, are theoretically unjustified. In Arampatzis et al. (2009),

the two component distributions were set to uniform within the offending score range; as

noted above, this is equivalent to randomization.

The problem does not seem severe for thresholding tasks. For example, Arampatzis

et al. (2009) tried to optimize the F1 measure and found that the impact of randomization

on thresholding is that the SD method turns ‘blind’ inside the offending range. As one goes

down the corresponding ranks, estimated precision would be flat, recall naturally rising, so

the optimal F1 threshold can only be below the range. On average, the optimal rank

threshold is expected to be deeper than the affected ranks, so the impact of non-convexity
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Fig. 2 Non-convexity inside the observed score range of a normal-exponential fit
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on thresholding deemed to be insignificant. Sometimes the problem may even appear

above the maximum observed score. Furthermore, the truncated normal-exponential model

used in Arampatzis et al. (2009) also helped to alleviate non-convexity by sometimes out-

truncating it; a modest and conservative theoretical improvement over the original model

which always violates the hypothesis.

4.1 Non-convexity of TREC 2004 Robust track runs

To further determine the effect of the non-convexity of the normal-exponential, we again

investigate the 110 submissions to the TREC 2004 Robust track. Table 1 also shows the

median rank at which the estimated precision peaks (hence there is a non-convexity

problem before this rank). We also show the effect of inverting the initial non-convex

ranks, in percentage of overall MAP. That is, if precision increases up to rank 3 then it

should make sense to invert the ranking of the first 2 documents. Two main observations

are made. First, the median rank down to which the problem exists is very low, in the range

of 1 (i.e. no practical problem) to 4, suggesting a limited impact on at least half the topics.

Although there are outlier topics where the problem occurs far down the ranking, some of

these may be due to problematic fits (Arampatzis et al. 2009). Second, ‘fixing’ the prob-

lematic initial ranks by inverting the order leads to a loss of MAP throughout. This signals

that the problem is not inherent in the underlying retrieval model violating the PRP.

Rather, the problem is introduced by the fitted normal-exponential; both practical and

fundamental problems can cause a misfit given the limited information available.

In the bottom line, the PRP dictates that any theoretically sound choice of component

densities should satisfy the convexity condition; from all the mixtures suggested in the

past, the normal-exponential as well as the normal-normal of unequal variances do not, for

all parameter settings. In practice, the problem does not seem to be severe in the case of

normal-exponential; the affected ranks are usually few. Given the theoretical and empirical

evidence, we argue that the problem is introduced by the exponential, not by the normal.

Moreover, many distributions—especially ‘peaky’ ones—have a GCL. For example,

assuming Poisson-distributed relevant document scores, for a system or query with a large

mean score the Poisson would converge to a normal.

5 In-the-limit hypotheses

The Recall-Fallout Convexity Hypothesis considers the validity of pairs of distributions

under the PRP. There are some reasons for considering distributions in pairs, as follows:

• The PRP is about the relative ranking of relevant and non-relevant documents under

conditions of uncertainty about the classification; it makes no statements about either

class in isolation.

• Consideration of the pair makes it possible for the hypothesis to ignore absolute scores,

and therefore to be expressed in a form which is not affected by any monotonic

transformation of the scores. Since ranking itself is not affected by such a

transformation, this might be considered a desirable property.

• If we wish in the future to extend the analysis to multiple grades of relevance, a

desirable general form would be a parametrised family of distributions, with different

parameter values for each grade of relevance (including non-relevance), rather than a

separately defined distribution for each grade.
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However, the evidence of previous work suggests that the distributions of relevant and

non-relevant look very different. This renders the third point above difficult to achieve, and

further suggests that we might want to identify suitable hypotheses to apply to each

distribution separately. Here we consider two hypotheses, the first of which achieves some

degree of separation but may be difficult to support; the second is expressed in relative

terms but may be more defensible.

Note that both hypothesis are ‘in the limit’ conditions—they address what happens to

the SDs under some limiting conditions of parameter values. They do not address the

behaviour of distributions in other than these limiting conditions. Therefore they do not

imply anything like the Recall-Fallout Convexity Hypothesis under actually observed

parameter values.

5.1 The strong hypothesis

The ultimate goal of a retrieval system is not to produce some SD, but rather deliver the

right items. In this light, the observed SD can be seen as an artifact of the inability of

current systems to do a direct classification. Therefore, the ultimate SD all systems are

trying to achieve is to the one with all relevant documents at the same high score smax, and

all non-relevant documents at the same low score smin. The better the system, the better it

should approximate the ultimate SD. This imposes restrictions on the two underlying

components:

The strong SD hypothesis For good systems, the score densities of relevant and non-

relevant documents should be capable of approaching Dirac’s delta function, shifted to lie

on the maximum score for the relevant and on the minimum score for the non-relevant, in

some limiting condition.

Let us now investigate which of the historically suggested distributions can approximate a

delta and how.

The normal goes to delta via r ? 0, and it can be positioned on demand via l. The

exponential approximates delta only via k ? ??. The Poisson has one parameter k,

which incidentally equals both its mean and variance. For large k, it approximates a normal

with a mean and variance of k. Consequently, as k grows, the variance grows as well and it

will never reach a delta. At the other side, for k = 0 it becomes Kronecker’s delta, i.e. the

discrete analogue of Dirac’s delta. The gamma has two parameters, Cðk; hÞ. For large k it

converges to a Gaussian with mean kh and variance kh2. The variance grows with k, but for

h ? 0 it declines faster than the mean. So, the gamma can approximate a delta via an

increasingly narrow Gaussian, and it can be positioned on demand via proper choices of

k and h.

Consequently, under the Strong SD Hypothesis, good candidates for relevant document

scores are the normal or gamma, while for non-relevant are the normal, Poisson, expo-

nential, or gamma. We only manage to reject the use of exponential and Poisson for

relevant; although these could be simply shifted at smax or vertically mirrored to end at

smax, those setups would seem rather strange and unlikely.

Considering the historically suggested pairs of distributions, we can reject the mixture

of two exponentials—at least as it was suggested by Swets (1969): while the non-relevant

exponential can approximate d(s - smin) for k ? ??, the relevant exponential cannot

approximate d(s - smax) for any k. The two Poisson mixture of Bookstein (1977) is

similarly rejected. The pairs remaining are the two normal, two gamma, or normal-

exponential. Since a normal for non-relevant is unlikely according to Arampatzis and van
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Hameren (2001) and Sect. 2, that leaves us with the two gamma or normal-exponential

with only the former satisfying the convexity hypothesis for a range of parameter set-

tings—not all. Note also that the two exponential or two Poisson constructions with the

relevant component vertically mirrored would violate the Recall-Falout Convexity

Hypothesis.

5.2 The weak hypothesis

The strong SD hypothesis would like to see all relevant documents at the same (high)

score, and all non-relevant documents at the same (low) score. This requirement is not

really compatible with any notion that there may actually be degrees of relevance (even if

the user makes a binary decision), and is also not necessary for perfect ranking perfor-

mance—either or both classes might cover a range of scores, provided only that they do not

overlap. Thus we can formulate a weaker hypothesis:

The weak SD hypothesis For good systems, the score densities of relevant and non-

relevant documents should be capable of approaching full separation in some limiting

condition.

Clearly, the strong hypothesis implies the weak hypothesis, because the Dirac delta

function gives full separation.

The weak hypothesis, however, would not reject the mixture of two exponentials: as we

push the mean of the non-relevant distribution down, non-relevant scores are increasingly

concentrated around zero, while if we push the mean of the relevant distribution up, the

relevant scores are more and more widely spread among high values. In the limit, perfect

separation is achieved. The weak hypothesis also does not reject the Poisson mixture, if we

achieve the limit by letting lambda go to zero for non-relevant and to infinity for relevant.

This is similar to the mixture of two exponentials, except that the relevant scores are

uniformly distributed over the positive integers only, instead of the positive real line.

The weak hypothesis is indeed weak, in that it does not reject any of the combinations

previously discussed. However, it reveals significant differences in the notions of ‘perfect’

retrieval effectiveness implicit in different combinations (and therefore what form

improvements should take in SD terms). This ‘in the limit’ behaviour is worth further

exploration.

6 Beyond-binary mixtures and grades of relevance

We may model SDs by means of more than two component distributions. In Kanoulas

et al. (2009), for example, non-relevant item scores are modeled with a gamma and rel-

evant scores with a mixture of n normals. The argument for doing so has been mostly

empirical, but the authors provide some intuition behind the choice the distributions based

on the number of matching terms between query and items. Roughly, different amounts of

matching terms in relevant items would produce different normals. A weaker argument, in

our opinion, is given for modeling the non-relevant with a gamma. That is, the contribution

of two or more matching terms to the final score is often very different, and averaging such

effects would be likely to produce a ‘hill’ of score frequencies (rather than a monotonically

decreasing density).

Next, we investigate the n-normals-gamma model and provide stronger theoretical

arguments for its use over the normal-exponential. Moreover, we present theoretical and
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empirical evidence [via post-analysis of the experimental results of Kanoulas et al. (2009)]

that shows that the n-normals-gamma is a generalization of the normal-exponential and

both models may converge to similar fits with increasing query length, as long as the

exponential is fitted only to the high-end of non-relevant scores.

6.1 n-Normals-gamma versus normal-exponential

There are fundamental differences between the early proponents of the normal-exponential

model. Arampatzis and van Hameren (2001) claimed a normal for relevant only via a

Gaussian central limit (GCL) tied to query length and only for scoring functions of the

form of linear combinations of query term weights. They also claimed just an approxi-
mation with an exponential of the high-end of non-relevant scores. Manmatha et al. (2001),

and most studies afterwards, have ignored the effect of query length or scoring function on

the shape of the relevant SD, and also some have used an exponential to model the non-

relevant in the whole score range. While these simplifications may have haunted previous

empirical results, the n-normals-gamma model does not suffer from them since it is a

generalization with a better agreement to what was originally proposed by Arampatzis and

van Hameren (2001).

First of all, Kanoulas et al. (2009) implicitly assume linear scoring functions. Let us

now consider each item category individually. The shape of the SD of relevant items can

be arbitrary before a GCL is reached. A strong argument for using a n-Gaussian mixture is

that it is the simplest method that—for a sufficiently large n—can model arbitrary dis-

tributions, as well as a GCL for n = 1.2 To strengthen also the ‘hill’ argument of Kanoulas

et al. (2009) for the non-relevant SD, consider an extreme query consisting of all terms of

an indexed collection. Against such a query, all non-relevant items will get non-zero

scores, shifting the mode of the corresponding SD above zero. A gamma provides more

flexibility to capture such effects, while it can still degenerate into an exponential (for a

shape parameter k = 1) when queries are short. In any case, a gamma tail can be

approximated by an exponential.

Kanoulas et al. (2009) show that the relevant SD of 70% of the topics can be fitted

better with 2 Gaussians and only 30% are fitted better with a single one.3 They also provide

the distribution of the shape parameter k of the fitted gammas, which has a mean of 1.3 and

a mode of around the same value. In a post-analysis of their experimental evidence it seems

that as query length increases—from using only the topic title to using the title, description,

and narrative—the number of topics better fitted with a single Gaussian increases at the

expense of 2-Gaussian fits. Moreover, the mode of the distribution of k seems to slightly

increase away from 1 with increasing query length. These observations support our

arguments on the existence of a relevant GCL and generally a non-exponential non-

relevant SD.

To evaluate the quality of the total fits, Kanoulas et al. (2009) report the root mean

square (RMS) error as well as the mean absolute error (MAE) between the actual and the

predicted precision at all recall levels for n-normals-gamma and normal-exponential for

2 As a proof for this consider kernel density estimation methods with a Gaussian kernel, i.e. methods for
approximating an arbitrary density from data points by a non-weighted sum of equal variance Gaussians
positioned at each data point. By allowing a weighted sum and unequal variances, a mixture of Gaussians
provides even better flexibility.
3 The Kanoulas et al. (2009) results are arguable, given the use of the K-S goodness-of-fit test in inap-
propriate ways. In principle, the K-S test cannot be used when the distribution parameters are estimated from
the data, as in their study; however, their results can be considered indicative.
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four retrieval models. Overall, the n-normals-gamma outperforms the normal-exponential

at all query lengths. However, our post-analysis shows that, as query length increases, the

percentage difference between the errors of two models slightly narrows: from 19–29%

(depending on the retrieval model) to 18–23% in RMS error, and from 24–37% to 27–33%

in MAE. This apparent convergence of the two models can only come from the relevant

component since—as we argued and showed above—increasing query length worsens the

exponential fits on the total non-relevant SDs; however, this could have been neutralized

by fitting only the high-end of non-relevant scores.

6.2 Grades of relevance

Although this is not one of the motivations proposed in Kanoulas et al. (2009), one

possible interpretation of the n-normals-gamma model is that it represents grades of rel-

evance. That is, we might hypothesise that there are multiple grades of relevance (other

than non-relevant) and that each grade has its own normal distribution of scores. The usual

hypothesis of binary relevance is certainly an over-simplification, and it is worth consid-

ering what a generalised model, not making this assumption, should look like. Here we first

give an idealised version of a very general model, and then return to a discussion of

the n-normals-gamma model.

A general model of relevance, which would fit reasonably with a variety of experi-

mental evidence over a long period, might be as follows. We assume that there is some

underlying continuous relevance variable ranging from not-at-all to very highly relevant

(in other words it would include non-relevance). Such a model was proposed in Robertson

(1977); the continuous variable is there named synthema, which name we also use here for

convenience. We then assume that assigning binary or graded relevance involves the

setting of thresholds on synthema. Thus in obtaining relevance judgements, in any specific

set of categories (binary or multiple), we observe only a bucketted version of synthema.

The true continuous synthema remains hidden. We also have to consider that the obser-

vations may be noisy; noise may be present in both in the user’s assessment of the position

of the individual document on the synthema scale, and in the user’s location of the

thresholds on the scale.

Now, if we wish to combine this model with the notion of score distributions, the most

natural model would be as follows. The score distribution should belong to a single family

parameterised by the same synthema variable. In other words a given document with given

synthema would be assumed to have a score drawn from the corresponding member of the

distribution family. We would naturally assume (for a reasonable system) that the mean of

the distribution would be a monotonic function of synthema. To put it another way, the

score would be assumed itself to be a noisy estimate of synthema (up to a monotonic

transformation).

Superficially, this model suggests that in the binary case we should be looking for

models where both the relevant and non-relevant distributions come from the same fam-

ily—e.g. normal-normal rather than normal-exponential or normal-gamma. However, the

situation is somewhat more complex, because of the bucketting. Bucketting suggests that

each of the two observed distributions is a mixture of a large number of distributions from

the family, rather than a single one (noisy bucketting just reinforces this suggestion). We

might now take this as an explanation for why the non-relevant distribution looks some-

what different from the relevant. What we actually observe is a mixture of a very large

number of distributions (over a large range of the synthema scale), with (probably) a very

heavy bias towards the very low end of the scale. Thus even if the original distribution
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family was the normal, we could easily get from this mixture process something like the

very skewed distributions of non-relevant scores that we do in fact observe.

Turning to the relevants, the spread of synthema values is likely to be much less

skewed, but also the actual examples are very sparse. It is clear that a small number of

documents cannot support estimation of a large number of distributions, so that the

technique adopted in Kanoulas et al. (2009) only indicates a minimum number of normals

to make sense of the data.

It would be possible to devise some tests of these ideas using test data with multigraded

relevance judgements. We leave such experiments for later work. We also note that we

need to investigate the generalisation of the convexity or other hypotheses to this situation.

6.3 Summary

The n-normals-gamma model is a generalization of the normal-exponential which, due to

its increased degrees of freedom, provides better fits than the latter when queries are not

long enough for a relevant component GCL and at the same time are not too short to result

in an exponential non-relevant component. Additionally, the n-normals can approximate

arbitrary densities for a sufficiently large n, fitting retrieval models with relevant SDs not

adhering to normal. Nevertheless, considering that a gamma tail can be approximated by an

exponential and assuming long enough queries producing a GCL, one may instead find

practically easier and sufficient to fit a normal-exponential on the high-end of scores due to

fewer parameters involved.

It is easy to see that the n-normals-gamma model violates the Convexity Hypothesis for

some parameter values, e.g. at least for the ones that it degenerates to a normal-exponential

but even for more than those. It cannot be rejected, however, by either the Strong or the

weak hypothesis, and it may be suitable for dealing with more than two grades of

relevance.

7 Practical problems of mixture models

All mixture models irrespective of their component choices present some practical prob-

lems. Estimating the component densities is best done when many relevance judgements

are available. In practice, relevance judgements are not available at all, or they are sparse,

incomplete, or biased, making the estimation of the components of a mixture difficult.

Much recent work on evaluation has focussed on the issues of evaluating (e.g. estimating

evaluation metrics) with limited judgements, or of choosing which documents to have

judged to optimise the estimation. We note that there has been no comparable work on

estimating the shapes and/or parameters of score distributions from limited judgements.

In the contexts of meta-search (Manmatha et al. 2001) and in adaptive filtering

(Arampatzis 2001), the authors tried to recover the mixing parameter and the parameters of

the component normal and exponential densities without using any relevance judgements.

The standard iterative approach expectation maximization (EM) (Ripley and Hjort 1995)

was used with some success. The method can be modified to take into account relevance

judgements, if any, nevertheless, it was found to be ‘messy’ and difficult to tune. It was

very sensitive to the choice of the initial parameter values in converging to a global

optimum rather than a local one.

As noted recently in Arampatzis and Kamps (2008), EM has also the of ‘problem’ of

treating all data equally, while we are more interested in the top of the ranking/scores in IR.
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The problem manifests as a ranking-length bias: the more the score data, the lower the

estimated threshold. In similar lines, regression (which we will see in Sect. 9) has the same

problem: it optimizes the overall performance but not necessarily the retrieval quality at

the top of the ranking, as noted in Fuhr et al. (1993). For that reason, Cooper et al. (1994)

used only the top-ranked data for training.

When normalizing scores (especially of non-cooperative search engines), one should

keep in mind that systems produce scores in order to rank documents, and do not care

about the scale or shape of the scoring function. Therefore, system components which do

not affect rankings may be added or removed arbitrarily, in order to, e.g., simplify cal-

culations. Components which affect only the scale are not a problem for mixture models.

However, many transformations affect the shape as well, e.g. using a logistic function to

map (-?, ??) to [0,1]; in such cases, the initial choice of the density components may

not apply any longer.

8 Single distribution approaches

The analysis of previous sections suggests that the normal-exponential mixture is not

universal in modeling SDs in IR; some retrieval models perhaps could better be fitted with

different mixtures, as in the case of KL-DIVERGENCE (Fig. 1). Furthermore, the model has a

serious theoretical problem: it does not satisfy the convexity condition, i.e. the output score

does not monotonically increase with the input score. The problem shows always at the top

of rankings, and it does not seem to be severe for thresholding tasks where an optimal

threshold may often be lower than the non-convex ‘blind’ range, depending on the measure

under optimization (Arampatzis et al. 2009). The problem is more acute in environments

favoring initial precision such as in meta-search and distributed retrieval.

To make things worse, there are practical problems in estimating the parameters of

mixture models, usually due to insufficient numbers of relevance judgements or quality of

them (biases, incompleteness). Approaches which do not use relevance judgements seem

difficult to tune, especially when relevance is sparse. Test collections are usually made in

such ways that there is some minimum number of relevant items per request. In reality,

given a collection, there can be no relevance for some queries. The same can happen when

test collections are split further in order to facilitate distributed retrieval setups. As a result,

score distributional approaches to score normalization without reference to relevance may

have some merit.

A standard method for score normalization that takes the SD into account is the Z-SCORE.

Scores are normalized, per topic and engine, to the number of standard deviations that they

are higher (or lower) than the mean score: s0 = (s - l)/r, where l is the mean score and r
the standard deviation. Z-SCORE seems to assume a non-skewed distribution of scores, where

the mean would be a meaningful ‘neutral’ score. As it is well-known, actual SDs are highly

skewed and clearly violating the assumption underlying the Z-SCORE. Although not very

popular in IR, Z-SCORE was used with reasonable success in Savoy (2003), Kamps et al.

(2005).

8.1 The Fernádez et.al. method

A recent attempt models aggregate SDs of many requests, on per-engine basis, with single

distributions (Fernández et al. 2006a, b); this enables normalization of scores to
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probabilities—albeit not of relevance—comparable across different engines. Per engine,

the proposed normalization is

s0 ¼ F�1ðPðS� sÞÞ ð1Þ

where P(S B s) is the cumulative density function (CDF) of the probability distribution of

all scores aggregated by submitting a number of queries to the engine, and F is the CDF of

‘‘the score distribution of an ideal scoring function that matches the ranking by actual

relevance’’. The F-1 transformation is called ‘‘standardization step’’, it is common across

all engines participating in a fusion or distributed setup, and considered critical to the

method for compensating for potential individual system biases.

In a large fusion experiment using TREC Web Track data, Fernández et al. (2006a, b)

found that the method performs better than CombSUM (with standard or rank-sim nor-

malization) and CombMNZ (Lee 1997). For score aggregation, historical queries were

used, and only 25–50 seemed enough for good end-results. The method seems very

promising, however, unnecessary complicated as we explain next.

8.2 The aggregate historical CDF method

By definition, F is monotonically increasing since it is a CDF. Its quantile function F-1 is

also monotonically increasing, and since it is applied as a constant transformation to all

engines it has no effect on rankings or the comparability of normalized scores across

engines. Thus, at least in distributed retrieval setups where normalized ranked lists are

simply merged, F-1 has no impact and it can safely be removed from the calculation.

However, F-1 can make a difference if the resulting scores are going to be linearly

combined, as e.g. in meta-search/fusion setups, because it is non-linear. Nevertheless, its

impact and interpretation is unclear.

The distribution in question is roughly approximated by the ‘‘average distribution of

several good scoring systems’’, not a very well-defined concept. The transformation seems

to be an attempt to turn the probability back into something that looks a little more like a

score, so that it can be operated on as if it were a score—for example, summed with other

scores.

Consequently, we find it hard to see why the combination of functions in Eq. 1 returns a

meaningful number, and since F-1 is constant across engines we could settle for the

simpler method

HIS: s0 ¼ PðSHIS� sÞ ð2Þ

where HIS refers to the fact that historical queries are used for aggregating the SD that the

random variable SHIS follows. HIS normalizes input scores s to the probability of a historical

query scoring at or below s. The aggregate historical SD is an average which can be seen as

produced by an ‘average’ historical query. In this respect, HIS normalizes the SD of the

‘average’ query to uniform in [0,1]. Cormack et al. (1999) takes a similar approach, by

averaging the distribution over queries; see also the discussion in Hawking and Robertson

(2003).

8.3 Signal-to-noise methods

The HIS method was found to be very robust and well-performing score normalization

method in distributed retrieval (Arampatzis and Kamps 2009). The same study went further
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to suggest normalization methods based on the assumption that scores consist of a signal

and a noise component. The distributions of signal and noise over scores were approxi-

mated by submitting appropriate sets of artificial queries to each participating search

engine, in a similar fashion to the HIS method. These signal-to-noise methods are essentially

dual distribution methods without reference to relevance, and they were found to perform

better than HIS. We will not expand further here but refer the reader to the last-cited study.

8.4 Caveats

With the exception of Z-SCORE, the single distribution approaches we analyzed above

characterize an engine with a single score transfer function. The underlying implicit

assumption for doing that, instead of doing it per query as mixture models do, is that

systems produce scores comparable across queries. It is possible, however, that a system’s

scores are affected by query characteristics independent of relevance (e.g. query length,

sum of query term IDFs, etc.)

The notion of whether or not scores are comparable across queries is a somewhat

complex one. For example, one may argue that any scoring function that involves a linear

sum of term weights must yield scores which are not comparable across queries, because it

clearly can get larger with more terms in the query. But that is not necessarily a good

argument—if what is needed is a probability of relevance, then it may simply be that with a

longer query one can assign a higher probability of relevance to some documents. As

another example, BM25 has a much more subtle dependence on the query—arising from

the fact that it ignores the prior probability of relevance (because it does not affect the per-

query ranking)—so that the scores for queries with many or few relevants in total should

not be comparable. Consequently, there are all sorts of reasons to doubt score compara-

bility across queries.

The single SD approaches analyzed above cannot introduce non-convexity since they do

not affect ranking order; they are monotonic transformations of the input score. But even if

they perform better than mixture models in some setups, e.g. where a particular mixture

does not fit well or relevance is sparse making fitting the relevant component distribution

difficult, they are (with the exception of Z-SCORE) based on the dubious assumption of score

comparability across queries. Thus, they may not be theoretically sound. In practice, the

problem can be dealt with by profiling SDs in ranges of values of affecting query features.

This, however, opens up many questions such as which the affecting features are, what

their suitable value ranges are, etc., and possibly introduces many parameters by increasing

the dimensionality of the problem.

At any rate, the aggregate SD methods may be computationally expensive but practi-

cally feasible and efficient, since transfer functions can be pre-calculated offline and may

only have to change with significant collection updates. Nevertheless, it is not clear—if it is

even possible—how using a single SD or Z-SCORE can be applied to thresholding, where for

optimizing most common measures a reference to (or probabilities of) relevance are

needed.

9 Logistic regression

One of the main purposes of the SD analysis is to help to discover a good form of score

normalization, preferably one that turns a score into a probability of relevance. An alter-

native approach would be to attempt to devise new scoring functions that have good
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distributional properties, or seek a calibration function by trying out different transfor-

mations on the scores of an existing system. Following the discussion on independence of

Sect. 1, we make a connection with the work of Cooper et al. (1992), who argue that

systems should give users explicit probability-of-relevance estimates, and use logistic

regression techniques to achieve this. The idea of using logistic regression in this context

dates back in Robertson and Bovey (1982), and re-iterated by many others.4

Given some training data, logistic regression has been used to calibrate scores in some

specific systems, mainly just with a view to ranking (Robertson and Bovey 1982), but

partly also to give calibrated probabilities (Cooper et al. 1992; Robertson and Walker

2000; Nottelmann and Fuhr 2003). In Cooper’s approach, it was found necessary to do the

regression in two stages, in order to compensate for systematic biases introduced into

probabilistic models at the first stage by statistical independence assumptions. However,

the model in Cooper et al. (1994) did not fit the data well. In the case of Robertson and

Walker, logistic regression was applied to a score produced by BM25, simply in order to

calibrate it correctly for thresholding, and it did pretty well in adaptive filtering. Nottel-

mann and Fuhr compared logistic against linear regression for mapping probabilities of

inference to probabilities of relevance in a distributed retrieval context, and found that

logistic functions yield better results.

In theory, the scores produced by any system could be calibrated using a combination of

logistic regression and well-chosen transformations. Basic logistic regression assumes a

linear relationship between the independent variables, in this case the uncalibrated score

and log-odds. Thus any non-linearity in this relationship would have to be dealt with by an

initial transformation of the independent variable. Appropriate transformations might need

to be guessed (this is potentially a disadvantage of this method) or perhaps investigated

using a technique such as that discussed in Craswell et al. (2005). An advantage would be

that any dependence of the scores on query features such as length could potentially be

taken account of, by including such features as additional independent variables. The result

of this process would be a normalised score, either as log-odds on a (-?, ?) scale or as a

probability in a (0,1) range.

This approach is non-parametric—that is, it is not dependent on any assumptions about

or analysis of score distributions. In effect, the role played by distributional assumptions in

the other methods discussed here is taken over by the transformations question. However, it

is not applicable if there are no training data, and the coefficients estimated depend heavily

on the choice of the training sample (Fuhr et al. 1993). Also, while there is some agree-

ment on which query features affect scores and should be taken as independent variables,

there are also variations; e.g. Fuhr et al. (1993) use the sums of the logged IDFs of the

matched terms while Cooper et al. (1994) use the means.

At any rate, the resulting probabilities of relevance are sufficient for merging rankings

in distributed retrieval and fusion setups, and for some of the thresholding tasks identified

in the introduction but not for all—some require more complete distributional information.

Given probabilities of relevance, however, we may find it easier to perform SD analysis

and the chances of discovering a universal pair of distributions greater. Thus, logistic

4 Other forms of regression analysis, e.g. linear (van Rijsbergen 1992) or polynomial (Fuhr et al. 1993),
have also been tried. In order to consider general linear models, a function which expands to the whole real
line is needed. Cox (1970) gives good reasons why the logistic function is the simplest function which does
this, and moreover it has some nice properties. A major benefit is that of yielding only values between 0 and
1 so there is no problem with outliers.
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regression, or some other transformation, may play a calibrating role helping out in further

distributional analysis. This is an under-explored avenue worth pursuing.

10 Conclusions and directions for future research

The empirical evidence so far confirm that SD methods are effective for thresholding in

filtering or ranked lists, as well as score normalization in meta-search. Specifically, the

normal-exponential model seems to fit best vector space or geometric and BM25 retrieval

models. Some mixtures have theoretical problems with an unclear practical impact. For

example, the impact of non-convexity of the normal-exponential model on thresholding

seems insignificant, however, elsewhere the effect may vary. Latest improvements of the

model, namely, using truncated component densities alleviate the non-convexity prob-

lem—providing also better fits on data and better end-effectiveness in thresholding—

without eliminating it (Arampatzis et al. 2009).

The classic methods assume a binary relevance. A different approach would have to be

taken, if degrees of relevance are assumed. For example, in TREC Legal 2008, there was a

3-way classification into non-relevant, relevant, and highly relevant. This complicates the

analysis considerably, suggesting the need for three distributions. In this respect, it would fit

more naturally with a model where both or all distributions came from the same family. It is

difficult to see how one could adapt something like the normal-exponential combination to

this situation. However, the recently-proposed model of n-normals-gamma (Kanoulas et al.

2009) may provide a starting point. On the flip-side, approaches that analyze SDs without

reference to relevance are just beginning to spring up (Fernández et al. 2006a, b; Arampatzis

and Kamps 2009); although effective for score normalization in distributed IR and seemingly

suitable for fusion, they seem unsuitable for thresholding tasks.

An alternative approach to the modeling problem would be to attempt to devise new

scoring functions that have good distributional properties, or seek a calibration function by

trying out different transformations on the scores of an existing system. These could be

achieved by means of logistic regression producing probabilities of relevance. Probability

of relevance itself is sufficient for the tasks of distributed retrieval and fusion and for some

of the thresholding tasks identified in the introduction but not for all—some require more

complete distributional information. However, given probabilities of relevance we may

find it easier to perform SD analysis and the chances of discovering a universal pair of

distributions greater.

A universal pair should satisfy some conditions from an IR perspective. Although the

two new hypotheses we introduced do not seem to align their demands with each other or

with the older one, the pair that seems more ‘bullet-proof’ is that of the two gamma

suggested by Baumgarten (1999). The gamma can also become normal via a GCL or

exponential via k = 1, thus allowing for the two exponential and normal-exponential

combinations which are also likely depending on which conditions/hypotheses one con-

siders. The increased degrees of freedom offered by the two gamma, however, is a two-

edged sword: it may just allow too much. Parameter estimation methods introduce another

layer of complexity, approximations, and new problems, as voiced by most previous

experimental studies and more recently by Arampatzis and Kamps (2008). At any rate, the

distributions in question do not necessarily have to be known ones.
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