
Versatile Query Scrambling for Private Web Search

Avi Arampatzis1 • George Drosatos1 •

Pavlos S. Efraimidis1

Received: 25 June 2014 / Accepted: 27 April 2015 / Published online: 16 May 2015
� Springer Science+Business Media New York 2015

Abstract We consider the problem of privacy leaks suffered by Internet users when they

perform web searches, and propose a framework to mitigate them. In brief, given a ‘sensitive’

search query, the objective of our work is to retrieve the target documents from a search engine

without disclosing the actual query. Our approach, which builds upon and improves recent work

on search privacy, approximates the target search results by replacing the private user query

with a set of blurred or scrambled queries. The results of the scrambled queries are then used to

cover the private user interest. We model the problem theoretically, define a set of privacy

objectives with respect to web search and investigate the effectiveness of the proposed solution

with a set of queries with privacy issues on a large web collection. Experiments show great

improvements in retrieval effectiveness over a previously reported baseline in the literature.

Furthermore, the methods are more versatile, predictably-behaved, applicable to a wider range

of information needs, and the privacy they provide is more comprehensible to the end-user.

Additionally, we investigate the perceived privacy via a user study, as well as, measure the

system’s usefulness taking into account the trade off between retrieval effectiveness and pri-

vacy. The practical feasibility of the methods is demonstrated in a field experiment, scrambling

queries against a popular web search engine. The findings may have implications for other IR

research areas, such as query expansion, query decomposition, and distributed retrieval.

Keywords Query scrambler � Search privacy � Query-based document sampling �
Mutual information � Set covering � Inter-user agreement

An early shorter version of this work was published in European Conference on Information Retrieval, 2013.

& Avi Arampatzis
avi@ee.duth.gr

George Drosatos
gdrosato@ee.duth.gr

Pavlos S. Efraimidis
pefraimi@ee.duth.gr

1 Department of Electrical and Computer Engineering, Democritus University of Thrace, University
Campus, 67100 Xanthi, Greece

123

Inf Retrieval J (2015) 18:331–358
DOI 10.1007/s10791-015-9256-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-015-9256-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10791-015-9256-0&domain=pdf

1 Introduction

In 2006, AOL released query-log data containing about 21 million web queries collected

from about 650,000 users over 3 months (Pass et al. 2006). To protect user privacy, each

IP address had been replaced with a random ID. Soon after the release, the first ‘anony-

mous’ user had been identified from the data: the user assigned the ID 4417749 was

identified as the 62-old Thelma (Barbaro and Zeller 2006 (accessed June 5, 2014)). In-

terestingly, this identification was made solely on the queries attributed to her anonymous

ID. Even though AOL withdrew the data a few days after the privacy breach, copies of the

collection still circulate freely online. The incident only substantiated what was already

known: web search can pose serious threats on the privacy of Internet users.

The AOL personal data breach has motivated lots of research in web-log anonymization

Carpineto and Romano (2013) and solutions using anonymized or encrypted connections,

agents, obfuscating by random additional queries (Murugesan and Clifton 2009) or added

keywords (Domingo-Ferrer et al. 2009), and other techniques (Shen et al. 2007). Another

way to perform privacy-preserving searching is to employ cryptographic tools, as in Cao

et al. (2014) or Boneh and Waters (2007). However, the cryptography-based techniques

presented in these papers are not applicable in the context of this work, since they rely on

collaborative search engines.

Popular search engines use query-logs to build user profiles, which can then be used to offer

personalized search services to the users Hannak et al. (2013). However, the user profiles built

by search engines can pose serious threats against the privacy of the users. Sometimes, it is

even possible to infer personal information, for example certain demographic data, from

seemingly irrelevant personal data of the users Bhagat et al. (2014). Therefore, many works in

the literature focus on controlling the personal information that flows into the profiles built by

search engines or on obfuscating these profiles by submitting fake queries.

A popular tool that permits users to obfuscate their web-search profile is the TrackMeNot

add-on (Howe and Nissenbaum 2009) for the Firefox browser. TrackMeNot tries to obfus-

cate the profile of a user by submitting some additional random queries. In this way, the real

queries are hidden in a larger set, and the task of identifying the actual interests of the user is

hindered to some extent. Another interesting add-on is OptimizeGoogle which, among other

features, trims information leaking data from the interaction of a user with Google. An

interesting combination of anonymization tools is employed in the Private Web Search tool

(Saint-Jean et al. 2007). In Sánchez et al. (2013); Viejo and Sánchez (2014) fake search

queries are used to distort in a disciplined way the user profiles built by search engines.

A community-based approach to support user privacy in information retrieval is pre-

sented in Domingo-Ferrer et al. (2009), where a user gets her query submitted by other

users of a peer-to-peer community. The main idea is distort user profiles by having search

queries submitted by other users. A similar approach is presented in Castellà-Roca et al.

(2009), and is further extended in Lindell and Waisbard (2010) to handle malicious

adversaries.

Finally, there are search engines such as DuckDuckGo1 and Ixquick2 that state that they

do not collect any personal user information, and some relay services like Startpage3—and

until recently Scroogle—that submit search queries to Google on behalf of anonymous

1 https://duckduckgo.com/.
2 https://ixquick.com/.
3 https://www.startpage.com/.

332 Inf Retrieval J (2015) 18:331–358

123

https://duckduckgo.com/
https://ixquick.com/
https://www.startpage.com/

users. For a recent extensive review on the literature, we refer the reader to Arampatzis

et al. (2013) and Peddinti and Saxena (2014).

There is an important reason why the above methods alone might be inadequate: in all

cases, the query is revealed in its clear form. Thus, such approaches would not hide the

existence of the interest at the search engine’s end or from any sites in the network path. In

addition, using anonymization tools or encryption, the plausible deniability4 towards the

existence of a private search task at the user’s end is weakened. In other words, when a

user employs the above technologies, the engine still knows that someone is looking for

‘‘lawyers for victims of child rape’’, and the user cannot deny that she has a private search

task which may be the aforementioned one. Additionally, there are cases of web searches

where the search query should not be disclosed. For example, the search may concern some

new research or business idea. Finally, for very sensitive web searches, avoiding the

disclosure of the actual search query may be the only safe approach. Noteworthily, it has

been shown very recently, that the use of anonymization tools like Tor5 cannot always

assure that a web search will not be associated with the user who submitted the query.

More precisely, Peddinti and Saxena (2014) demonstrated that an adversarial search

engine, equipped with only a short-term history of a users search queries, can break the

privacy guarantees of Tor and TrackMeNot by only utilizing off-the-shelf machine

learning techniques.

In this work, we consider how to perform web searches without disclosing the actual

search query and the corresponding search interest of the user to any party, including the

web search engine. We call this the Query Scrambling Problem (QSP). A potential solution

to the QSP must work with existing web search engines, assure the privacy of the web

search query (and not necessarily the profile of the user at the search engine), and at the

same time manage to retrieve useful results (retrieval effectiveness). The retrieval effec-

tiveness of any method proposed for the QSP is a fundamental requirement. By definition

the ground truth are the results that a web search engine would return had the private search

query been submitted to it. Thus, the scrambled or blurred or whatever queries replace the

private search query must retrieve as many as possible of the target results of the private

query.

A way to achieve the above—which has been proven a rather ambitious goal—was

introduced in Arampatzis et al. (2011), called query scrambler, and works as follows.

Given a private query, generate a set of scrambled queries corresponding loosely to the

interest, thus blurring the true intentions of the searcher. The set of scrambled queries is

then submitted to an engine in order to obtain a set of result-lists called scrambled

rankings. Given the scrambled rankings, it is attempted to reconstruct, at the searcher’s

end, a ranking similar to the one that the private query would have produced, called target

ranking. The process of reconstruction is called descrambling. The scrambler employed

semantically more general queries for the private query, by using WordNet’s ontology. The

key assumption was: the more general a concept is, the less private information it conveys.

A semantic approach to generate ‘‘blurred’’ queries is also presented in Sánchez et al.

(2013). However, there the focus is on obfuscating in a controlled way the user profiles

built by search engines. There is no requirement for retrieval effectiveness of the ‘‘blurred’’

queries, and consequently no experiments about the retrieval effectiveness are presented.

4 Plausible deniability is a legal concept which refers to the lack of evidence proving an allegation. See also
http://en.wikipedia.org/wiki/Plausible_deniability.
5 http://www.torproject.org.

Inf Retrieval J (2015) 18:331–358 333

123

http://en.wikipedia.org/wiki/Plausible_deniability
http://www.torproject.org

Dealing with the QSP problem, i.e., with how to find the target results for a particular

search query without disclosing the query, is a plausible and interesting problem in the field of

privacy-enhanced web searching. Nevertheless, we are not aware of related works beyond the

above that address this problem or some close variation of it. Most related work either focuses

on query-logs or on user profiles built by search engines. Approaches that focus on query-logs

do not fit the QSP problem, since in the QSP the query should not be disclosed in the first

place, and moreover, in these approaches there is usually no requirement for retrieval ef-

fectiveness. In the case of user profiles, the common practice is to submit the search query

either in a way that is not linkable to the user or hidden within a set of fake queries. Such

approaches can be used to protect the user profile but generally do not fit the QSP problem,

since the QSP requires that the search query must not be disclosed at all.

The main contributions of this work are the following. In contrast to the semantic framework

used in previous work, we employ a purely statistical framework. Within this statistical

framework, we define three comprehensive privacy objectives—including the equivalent of the

privacy objective introduced in Arampatzis et al. (2011). These objectives are used to define

and quantify the privacy guarantees for a given web search task. All statistics needed for

generating scrambled queries are estimated on a query-based document sample of the remote

engine (Callan and Connell 2001); we also provide some empirical heuristics for taking better

samples faster. Additionally, we investigate an alternative approach based on set covering,

aiming to diversify the selection of scrambled queries in the sense that each one covers a

different part of the private information need. Compared to the semantic approach, our methods

are found to be significantly better in retrieval effectiveness, better defined, more versatile,

predictably behaved, applicable to a wider range of information needs, and the privacy they

provide is more comprehensible to the end-user. Furthermore, we conduct a user study which

confirms that our word-frequency based criteria can provide strong indicators to what users

perceive as private or ‘safe’. Last, via a field experiment with a real web search engine, we

identify some technical challenges in putting the proposed methods into operation.

The rest of this paper is structured as follows. In Sect. 2 we present our approach for

privacy-enhanced web search. The creation of document samples of search engines is

described in Sect. 3, and the production of scrambled search queries in Sect. 4. We evaluate

our methods with an extensive set of experiments in Sect. 5. Moreover, we present a set

covering approach for query scrambling (Sect. 6), a user study on how actual users perceive

the privacy concepts and criteria that we propose (Sect. 7), and conduct a field experiment

of query scrambling on a real web search engine (Sect. 8). Conclusions are drawn in Sect. 9.

2 A statistical approach to query scrambling

We assume an Internet user with an information need expressed as a query for a public web

search engine like Google, Bing or Baidu. The retrieval task we focus on is document

discovery, i.e. finding documents that fulfill the information need of the user.

The Query Scrambling Problem (QSP) (Arampatzis et al. 2011) for privacy-preserving

web search is defined as: given a private query q for a web search, it is requested to obtain

the related web documents as if q had been submitted to a search engine. To achieve this, it

is allowed to interact with search engines, but without revealing q; the query and the actual

interest of the user must be protected. The engines cannot be assumed to be collaborative

with respect to user privacy. Moreover, the amount of information disclosed in the process

about q should be kept as low as possible.

334 Inf Retrieval J (2015) 18:331–358

123

2.1 Privacy in web search

Given a private query q, we identify two types of privacy-sensitive resources:

– The q itself representing the information need of the user. In this work, we use q and

information need interchangeably.

– The document set matching q, given by a public search engine. An adversary

monitoring these results can extract significant information about the information need.

Some definitions are in order. Let N be the size of the document collection, Hq the set of

documents matching q, and dfq ¼ jHqj the document frequency of q, i.e. the number of

documents in the collection that q hits. Finally, let dfw;q ¼ jHw \ Hqj, for any queries w

and q. Let us, for now, assume that w and q are single-term queries, so Hw and Hq are

determined simply by the document sets their terms occur in; in Sects. 4.1 and 4.2 we will

see how we deal with multi-term queries.

We can now define two privacy primitives for web-search. The first one is based on the

popular k-anonymity (Sweeney 2002), or k-indistinguishability, concept, which in the

context of our work means that an adversary should not be able to come closer than a set of

k possible alternatives to the private resource. Given q, for a candidate scrambled query w

the first primitive kw is

kw ¼ dfw

dfw;q
; ð1Þ

a privacy measure between the two queries based on the concept of k-indistinguishability

of the results. In other words, kw gives the number of documents that each target document

is hidden within, in the set of results hit by scrambled query w; the larger its kw, the more

private w is. Note, that kw is the inverse precision of the retrieval results of w with respect

to the results of q. From a privacy perspective, when submitting w instead of q, each of q’s

target documents is ‘hidden’ within kw � 1 other documents.

The second primitive gw is

gw ¼ dfw

N
; ð2Þ

a measure of the generality of w. In other words, gw is the fraction of the collection that a

scrambled query w hits. The rationale behind gw is that a general query can be assumed to

be less exposing. As an indication of how general a query is, we use a pure statistical

measure: The more documents of the collection a query hits, the more general the query is.

Based on the above primitives we define the following privacy objectives and present a

use-case for each of them:

– Anything-But-This privacy or ABTk: assume a researcher in academia or industry who

is working on some new application or product. The researcher might be interested in

searching about her new idea, but might hesitate to submit a query in a clear form to a

public search engine. Additionally, she doesn’t care about what else will be revealed as

long as it isn’t her true interest. With ABTk the researcher can conduct a scrambled

search where each scrambled query w satisfies kw [k, where k is a parameter (or

‘knob’) given to the user, with k� 1, which controls the required privacy; the larger the

k, the better the privacy.

– Relative-Generalization privacy or RGr: a person might be looking for information

about some disease, but would not like to disclose the exact disease. A scrambled

Inf Retrieval J (2015) 18:331–358 335

123

search based on scrambled queries more general than q by a factor of r might serve her

need, while significantly reducing her privacy risks. Formally, RGr means that every w

must satisfy gw [r � gq, where r� 1. Again, r is a ‘knob’ for the user to decide the

privacy level required; the larger the r, the better the privacy.

– Absolute-Generalization privacy or AGg: consider a citizen in some totalitarian regime.

The user might decide to scramble one or more sensitive queries, for example about

specific human rights, into queries with generality above a given user-specified

threshold g. In this case, every scrambled query must satisfy gw [g. As with the first

two objectives, g is a user-controlled parameter in ½0; 1Þ; the larger the g, the better the

privacy.

These three privacy types may be combined, if such a privacy request arises. Indeed, the

query scrambling approach that we present, can support arbitrary combinations of the

above criteria. Nevertheless, in the experimental evaluation we will focus on each privacy

criterion independently, in order to be able to draw conclusions from the outcomes. Finally,

note that, by their definition, the minimum RG privacy ðRG1Þ also assures the minimum

ABT privacy ðABT1Þ but not the other way around.6

Clearly, in realistic settings, it is not feasible to calculate the exact values of the privacy

measures defined above, since no one but the engine itself has access to its full collection.

However, we can resort to estimating the needed quantities from a query-based document

sample of the engine.

2.2 Overview of query scrambling

Let us give an overview of our approach for query scrambling. First, we obtain a collection

sample of size N with a query-based document sampling tool; this is done offline, however,

the sample should be updated often enough to correspond to significant collection updates

at the remote engine. In the online phase:

1. A private query q is decomposed into a set of scrambled queries. The scrambled

queries are chosen to satisfy the user-specified privacy objectives of Sect. 2.1. To this

end, we employ statistical information from the collection sample.

2. The scrambled queries are submitted as independent searches and all results are

collected. To avoid a reverse engineering attack, unlinkability between the scrambled

queries should be assured; otherwise, an adversary may collect and identify the

scrambled queries of a particular scrambled search, and may be able to extract

significant information about the private query q. An operational scrambling system

can achieve unlinkability by using different Tor circuits or some other privacy-

preservation tool for each scrambled query submission.

3. The query q may be locally executed on the scrambled results (local re-indexing), or

the scrambled ranked-lists may be fused with some combination method.

The tool we propose is intended to be used in the following way: a user can install it locally

and then use it to scramble privacy-sensitive queries. It does not rely on some trusted third

party for the scrambling process. However, the vendor of the tool may distribute document

samples of popular search engines in frequent time intervals.

6 A more general query w than the private query q will always hit more results than q thus achieving some
k-indistinguishability, while a w hitting other but overlapping results than q may or may not be more
general.

336 Inf Retrieval J (2015) 18:331–358

123

3 Document sampling of search engines

Our approach requires a document sample of the remote search engine. Here, we will

describe how we take such a sample, based on methods previously reported in the

literature.

We take a sample of the collection using random queries similarly to Callan and

Connell (2001); Tigelaar and Hiemstra (2010). We have slightly modified the procedure in

order to achieve higher efficiency (i.e. to increase speed and reduce network load by

issuing fewer queries) and reach a ‘richer’ sample (i.e. a sample consisting of a larger

number of unique and non-unique terms). The modified procedure works as follows.

We bootstrap the procedure with the arbitrary initial query ‘www’. At each step, the

procedure retrieves the first K results of the random query and adds them to the sample; we

set K ¼ 1. The last two aforementioned works have shown that the choice of the initial

query is not important and that K ¼ 1 is best suited for heterogeneous collections such as

the web. Then, a term is uniformly selected from the unique terms of the current sample

and used as the next random query until the desired sample size is reached. Here, we

introduce the following additional restrictions over the standard procedure described in

past literature: (1) candidate terms are at least three characters long and cannot be numbers,

and (2) should have a document frequency of more than 1 in the current sample, as long as

the sample contains at least two documents. Our experiments with sampling a few thou-

sand documents from the ClueWeb09_B dataset7 have shown that not using such a

document frequency cutoff results to around 5 % of the random queries hitting previously

retrieved documents. The cutoff removes this inefficiency by likely discarding misspellings

and unique identifiers, and it moreover produces a ‘richer’ sample faster by slightly re-

ducing fixation on previously seen topics: the number of terms (both total and unique) per

sample size is usually higher.

Concerning the sample size, previous research, such as e.g. Callan and Connell (2001);

Tigelaar and Hiemstra (2010), has shown that 200–500 documents, depending on collec-

tion characteristics, are sufficient. Most previous research, however, evaluated samples for

their vocabulary coverage and document frequency distribution with respect to the whole

collection. Beyond these two features, we are also interested in the quality of term co-

occurrence statistics, as it will become obvious in the following section. We are also

interested in knowing whether the set covering methods we will apply using a sample

(Sect. 6) transfer well to the whole collection. Consequently, we will mainly experiment

with a sample of 5000 documents from our test collection, which—although it is by an

order of magnitude larger than the size suggested by previous research—it may or may not

be large enough for our purposes; we will empirically examine this by also experimenting

with larger samples, e.g. 20,000. Even larger samples—23,000 and 50,000 documents—

will be used when sampling a real web search engine in Sect. 8.

4 Generating scrambled queries

For generating scrambled queries, we follow a statistical approach using the local docu-

ment sample of the remote search engine. So far, for simplifying the definition of the

privacy objectives in Sect. 2.1, we have assumed single-term private and scrambled

7 http://lemurproject.org/clueweb09.

Inf Retrieval J (2015) 18:331–358 337

123

http://lemurproject.org/clueweb09

queries. In the next two subsections, we will see how we can generalize the methods to

work with multi-term private queries (Sect. 4.1) and multi-term scrambled queries

(Sect. 4.2).

As soon as we generate a set of candidate scrambled queries, these are filtered for

privacy according to the objectives defined in Sect. 2.1. The remaining candidates are

ranked according to their expected retrieval effectiveness, described in the third sub-

section (Sect. 4.3), and the top-v scrambled queries are submitted to the remote engine.

Algorithm 1 at the end of this section gives an overview pseudo-code for the generation

method.

4.1 Dealing with multi-term private queries

If q is a single-term query, then its document frequency dfq can be determined directly

from the document sample. The question is how to treat a multi-term q, or else, what the

dfq of such a query is and which subset of dfq documents will be assumed as matching q so

we can harvest from it related terms to be used as scrambled queries.

Given dfq, the question of which subset of documents is matching q can be settled as:

we rank the sample documents with respect to q using some best-match retrieval model

and ORed q, and take the top-dfq documents. Estimating dfq can be seen as a typical

rank-thresholding problem. Recent approaches on rank thresholding, such as Arampatzis

et al. (2009), assume a binary document relevance to the query, fit a binary mixture of

probability distributions on the total score distribution, and seek to draw a score/rank

threshold that optimizes a given retrieval effectiveness measure. We instead use a

simpler approach, which we describe next, that does not involve relevance or selecting a

measure to optimize. This approach argues about reasonable upper and lower bounds for

dfq and uses those.

The minimum number of documents hit by a query q can be found by submitting q in an

ANDed fashion to the collection sample and count the number of results, enforcing a

minimum of 1 for practical reasons; we will refer to this lower bound as aDF. Now, the

maximum number of results an ANDed query can retrieve is mini dfi, where i is a query

term (i.e. the number of documents the query’s least frequent term hits); we will refer to

this number as mDF. This maximum number of results in an ANDed query is achieved

only when all other query terms co-occur in the documents hit by the query term with the

least df; in any other case, less than mDF documents are hit by the ANDed query. The term

with the least df is also the most informative: if we were to reduce a multi-term q to a

single term, this is the term we would keep. In these respects, mDF gives some upper

bound. Thus, we have aDF � dfq � mDF.

While aDF may be too restrictive especially for a long q, mDF may be too ‘loose’

especially if q does not contain a low frequency term. So, we employ and evaluate both

aDF and mDF as estimators of dfq. From a retrieval perspective, it is easier to create

scrambled queries to retrieve smaller sets of documents, thus, using aDF makes the task

easier than using mDF. From a privacy perspective, mDF is the largest df possible so it is

safer. For example, let us consider the information need represented by the query ‘‘big bad

wolf’’. Using aDF will point to documents about the ‘‘Little Red Riding Hood’’ fairy tale

(correctly), while using mDF will point to all documents referring to wolves including the

fairy tale. Since aDF’s target set is smaller, it can be easier retrieved by scrambled queries.

But using mDF instead, corresponds to trying to hide all wolves (would provide stronger

privacy).

338 Inf Retrieval J (2015) 18:331–358

123

4.2 Generating multi-term scrambled queries

For single-term scrambled queries, dfw can be determined directly from the document

sample. However, we can also generate multi-word scrambled queries. The question is how

to treat these, or else, what the dfw of such a scrambled query is and which subset of dfw
sample documents will be assumed as occurring in.

From the documents matching q, we enrich the set of candidate scrambled single-term

queries by using a sliding window of length W and generating all unique unordered

combinations of 2 and 3 terms. We use a window instead of whole documents so as to limit

the number of combinations; currently, we set W ¼ 16 which was shown in past literature

to perform best in ensuring some relatedness between terms (Terra and Clarke 2003) (see

also Sect. 4.3). We limit the scrambled query length to 3, since a typical web query is

usually between 2 and 3 words, which also helps to keep the number of combinations

practically manageable. In this procedure, we exclude all stopwords, using the list of

stopwords from the Text Categorization Project8, but keep a stopword if it exists in q.

The document set hit by such a scrambled query is estimated similarly to the method of

aDF described in Sect. 4.1: the ORed scrambled query is submitted to the sample and the

top-dfw documents are considered matching, where dfw is the number of documents

matching the ANDed scrambled query. The choice of aDF over mDF is made purely on

targeting the best privacy. aDF produces lower dfw estimates than mDF, so these queries

are less general and will be removed earlier as g increases. Also, using aDF implies that

queries are more targeted, achieving higher precision, so they will be removed earlier as k

increases.

4.3 Ranking scrambled queries

After dropping candidate scrambled queries w that violate privacy criteria either on kw or

gw, the remaining queries are ranked according to their expected retrieval quality with

respect to the document set matching the private query, i.e. the target set. For example, we

can measure this quality in terms of precision and recall, and combine those in one number

such as the Fb-measure (Manning et al. 2008). Although Fb seems like exactly what we

need for our purpose, initial tests showed that it may not be the best choice for our task due

to the difficult-to-quantify effects that a retrieval model’s weighting scheme has on the

terms of the chosen scrambled queries. Furthermore, since it has not been commonly used

before for detecting the best related terms, we also looked for alternatives.

Topically-related terms can be ranked via several methods; a common one is by

computing pointwise mutual information (PMI) using large co-occurrence windows

(Brown et al. 1992). For the task at hand, it is appropriate to consider whole documents as

windows; PMI scores each w co-occurring with q as

PMIw ¼ log
Pðq;wÞ
PðqÞPðwÞ ¼ logN

dfq;w

dfq dfw
ð3Þ

where Pðq;wÞ is the probability of q and w co-occurring in a document, and PðqÞ, PðwÞ,
the probabilities of occurrence of q, w, in a document, respectively. Using a large corpus

and human-oriented tests, Terra and Clarke (2003) did a comprehensive study of a dozen

word similarity measures and co-occurrence estimates. From all combinations of estimates

8 http://code.google.com/p/text-categorization/.

Inf Retrieval J (2015) 18:331–358 339

123

http://code.google.com/p/text-categorization/

and measures, document retrieval with a maximum window of 16 words and PMI (run

tagged as DR-PMI16 in the latter cited paper) performed best on average.9 However, both

document or windows-oriented approach for frequency estimates produced similar results

on average.

Although PMI has been widely used in computational linguistics literature, classifica-

tion, and elsewhere, it has a major drawback in our task. Removing constant factors from

Eq. 3, which do not affect the relative ranking of terms for a given q and collection, PMI

ranks terms identically to the ratio: dfq;w=dfw. Thus, PMI does not distinguish between

terms with the same ratio but different frequencies of co-occurrence with the query (hits),

although we would prefer terms with more hits to achieve recall so a lower volume of

scrambled queries is used. This low-frequency bias may not be undesirable for some tasks

(e.g. collocation extraction), but it is a drawback in our case due to our high precision and

recall preference. A workaround is to use instead a normalized version of PMI such as

NPMI (Bouma 2009), which divides PMI by� logPðq;wÞ, reducing some of the low

frequency bias but not all. In any case, our task—while related—is not exactly a linguistic

similarity one, where PMI works well in finding synonyms for TOEFL synonym tests

(Terra and Clarke 2003), or collocation identification, where NPMI works well (Bouma

2009).

Our task seems more related to scoring features for feature selection in classification.

Yang and Pedersen (1997) review feature selection methods and their impact on classifi-

cation effectiveness. They find that PMI (which, confusingly, they refer to as just MI) is not

competitive with other methods, and that the best methods are the v2-statistic and the

expected mutual information (MI) (Manning et al. 2008, Chapter 13.5.1, Equation 13.17)

(which they refer to as ‘‘information gain’’) with similar effectiveness. Still, our task is

different than a straightforward term selection for classification. In classification, all se-

lected terms are intended to be used simultaneously in order to classify a new object. Here,

we use selected terms as queries one by one in order to cover the target set of documents.

Beyond query volume, other parameters such as the number of documents retrieved per

related query and the cardinality of the target document set may impact the effectiveness of

the procedure.

There are still other IR methods that may work in the task at hand, e.g. taking the

centroid of the documents used to harvest scrambled queries and rank the scrambled

queries according to their centroid weight. All in all, since our task is different than

determining linguistic similarity or feature selection, it makes sense to evaluate some

common term similarity measures and feature selection methods, as well as some un-

common ones, in this context. In initial experiments, we compared PMI, NPMI, MI, F1, F2

and the weight of the centroid (of idf-only weighted documents), and found that MI and

centroid weight work best for the task of ranking scrambled queries. Fb with b ¼ 2, i.e.

weighing recall twice to precision, is slightly behind but competitive; the F-measure

however requires an extra parameter ðbÞ. NPMI works better than PMI, but both are left

quite behind. We will not present these results for space reasons, and will stick with MI for

the rest of the paper.

9 ‘‘Document retrieval’’ meant that document frequency statistics were used (as in Eq. 3) for the terms;
using collection frequencies instead requires a window-based approach for calculating term co-occurrence.
In both cases, ‘‘maximum window of 16 words’’ meant that only pairs of co-occurring words within 16
words were considered.

340 Inf Retrieval J (2015) 18:331–358

123

5 Evaluation

In order to evaluate the effectiveness of the scrambler and how its retrieval quality trades

off with scrambled query volume ðvÞ and scrambling intensity (k or g) over the different

privacy types (ABT/RG/AG) and scrambled query generation methods (aDF/mDF), we set

up an offline experiment. For comparison purposes, we used the set-up described in

Arampatzis et al. (2013).

5.1 Datasets, tools and methods

The private query dataset is available online10 and consists of 95 queries selected inde-

pendently by four human subjects from various query-logs. The selection was based on the

rather subjective criterion of: queries which may have required some degree of privacy.

Table 8 presents a sample of the test queries. As a document collection, we used the

10 http://lethe.nonrelevant.net/datasets/95-seed-queries-v1.0.txt.

Inf Retrieval J (2015) 18:331–358 341

123

http://lethe.nonrelevant.net/datasets/95-seed-queries-v1.0.txt

ClueWeb09_B dataset consisting of the first 50 million English pages of the ClueWeb09

dataset.11 The dataset was indexed with the Lemur Toolkit, Indri V5.2, using the default

settings, except that we enabled the Krovetz stemmer.12 We used the baseline language

model for retrieval, also with the default smoothing rules and parameters. This index and

retrieval model simulate the remote web search engine.

We took a document sample of the ‘remote’ collection with the method described in

Sect. 3. After initial experiments and according to the heuristic estimates of the necessary

sample size made in Sect. 3, we decided to use a sample of 5000 documents which

provides a good compromise between effectiveness and practical feasibility. We used the

same types of indexing and retrieval model for the sample as for the remote engine.

We targeted the top-50 documents of the remote engine. Since our document sample

was much smaller than 1/50th of the remote collection, all target top-50 documents cor-

responded to less than 1 document in the sample. In this respect, in order to improve the

focus of the scrambled queries, it makes sense to harvest those from a set of sample

documents of a smaller cardinality than dfq. In initial experiments we found that a good

compromise between focus and reasonably good statistics of document frequencies is to

take the top-tq sample documents returned by q, where tq ¼ minf10; dfqg, i.e. we harvested

scrambled queries from the at most top-10 sample documents. Similarly, we defined tw and

tq;w for the new set and calculated MI using these numbers instead; this was found to

improve retrieval effectiveness. Of course, the privacy constraints were applied to the

unmodified frequencies as described in Sect. 2.1.

Concerning the evaluation measures, we simplified the matters in relation to Arampatzis

et al. (2013) where scrambled rankings were fused via several combination methods and

the fused ranking was evaluated against the target one via Kendall’s s and a set intersection

metric. The fusion methods tried in the previous study were deemed weak in comparison to

a local re-indexing approach, i.e. index locally the union of top-1000 documents retrieved

by all scrambled queries and run the private query against the local index in order to re-

construct the target ranking. Nevertheless, even with local re-indexing the ceiling of

achievable performance was not reached: there were quite a few target documents retrieved

by scrambled queries that could not be locally ranked in the top-50. This was attributed to

having biased DF statistics in the local index. The experimental effort in the aforemen-

tioned study concluded with a bare experiment evaluating only the number of target top-50

documents found by the union of the top-1000 documents retrieved by all scrambled

queries. This allowed to remove the effect of de-scrambling and evaluate only the quality

of scrambling; this is what we will also do.

Furthermore, in this paper, we report results as fractions of the top-K target documents

found rather than absolute numbers of documents. Using fractions makes it easier to

directly compare results across experiments targeting different numbers of top documents,

i.e. using different values for K.

5.2 Results

The two left-most columns of Table 1, marked as ‘unfiltered’, show results with no pri-

vacy; these can be considered as the ceiling of achievable performance when de-com-

posing a user query q with the current methods. Even with no privacy, we do not get 50 out

11 http://boston.lti.cs.cmu.edu/Data/clueweb09/.
12 http://www.lemurproject.org.

342 Inf Retrieval J (2015) 18:331–358

123

http://boston.lti.cs.cmu.edu/Data/clueweb09/
http://www.lemurproject.org

of 50 target documents because there are cases where we cannot exactly reproduce q from

the sample for the following reasons. First, a term of q may not occur in the sample, e.g.

‘chamblee’ from ‘‘definition of chamblee cancer’’. However, such a term may occur in the

remote collection. Second, the terms of a multi-term q, e.g. ‘definition’, ‘chamblee’, and

‘cancer’, may not occur within a window of 16 terms in sample documents. Third, we

generate scrambled queries only up to three terms; obviously, longer private queries cannot

be re-produced. Nevertheless, we do not consider all these as problems of the method,

since they are introduced by technical choices we made in order to speed up the task. Only

the first reason produces some uncertainty, although the problem may be eased by simply

using larger samples. The other two can be completely removed by using no windows at all

but whole documents, and generate longer scrambled queries.

Table 1 also shows results for ABT privacy. The minimum privacy ðk ¼ 1Þ removes

only scrambled queries which occur in all documents of the sample target set. This has a

larger impact to a single-term q which may loose its 50 out 50 effectiveness. The table also

shows that for light or no privacy requirements mDF works better than aDF; this happens

because the sample target set of mDF is larger than this of aDF, so more scrambled queries

are harvested/generated leading to better results. However, the effectiveness of mDF de-

grades faster than aDF as k increases, so aDF works better, as expected and explained in

Sect. 4.1. For large k (e.g. for k� 2), the effectiveness of mDF roughly halves for every

doubling of k, suggesting a linear relation in log-log space or a power-law. The effec-

tiveness of aDF degrades slower.

Tables 2 and 3 show results for RG and AG privacy respectively. Using mDF, RG ef-

fectiveness roughly halves for every doubling of generalization, suggesting again a power-

law. Concerning AG privacy, the g values shown correspond to document frequency cut-offs

of 32, 64, 128 and 256 in the current sample size of 5000 documents. If a private query is

already general enough for a g value, it is not scrambled since it already complies with the

privacy requirements. Such queries are excluded from the average results of Table 3. The

numbers of private queries scrambled—thus contributing in the results—per g value and

choice of aDF/mDF are shown in the last row (#q). The effectiveness of mDF is similar for the

first three small g cut-offs but then falls off. In other words, we can generalize private queries

relatively well by using scrambled queries hitting up to roughly 2.5 % ðg ¼ :0256Þ of the

sample documents. At such an AG level, 66 % (63 out of 95) of the private query dataset is

deemed as not general enough so it is scrambled. Again, the aDF method is much better than

mDF in all cases, providing a less steep decrease in effectiveness as generalization increases.

The fact that aDF is more effective than mDF in all privacy types when more than light

privacy is required, does not mean that it should be the preferred method. As we noted in

Sect. 4.1, mDF represents stricter privacy than aDF which is experimentally proved to

trade off with retrieval effectiveness. The final choice between aDF/mDF should be left to

the end-user or determined via a user-study.

Table 1 ABT privacy; fraction of the top-50 target documents found by the top-v scrambled queries

v Unfiltered k ¼ 1 k ¼ 2 k ¼ 4 k ¼ 8 k ¼ 16

aDF mDF aDF mDF aDF mDF aDF mDF aDF mDF aDF mDF

2 .601 .683 .571 .606 .398 .241 .237 .101 .150 .040 .071 .023

10 .724 .792 .706 .751 .619 .473 .457 .225 .312 .103 .167 .048

50 .816 .885 .803 .849 .746 .662 .637 .387 .473 .216 .285 .105

Inf Retrieval J (2015) 18:331–358 343

123

Concerning scrambled query volume, in all privacy types and methods effectiveness

increases with higher volumes. However, due to the nature of the experimental setup, we

see diminishing returns as effectiveness gets closer to 100 %. At high privacy levels where

effectiveness suffers, we can see roughly a doubling of effectiveness for every five-fold

increase in volume, i.e. another power-law albeit a very steep one, suggesting that hun-

dreds or even thousands of scrambled queries may be needed for getting close to 100 %

effectiveness.

5.3 A comparison to semantic query scrambling

The previous literature dealt only with RG privacy, so we will compare our RG method

and results to it. The best effectiveness reported by Arampatzis et al. (2013) is 12.7 out of

50, i.e. 0.254, obtained at low volume (i.e. as many scrambled queries as can be produced

up to ten) and low scrambling (in the next paragraph there is an explanation of the

classification into low/medium/high scrambling of the semantic approach) by averaging

the results for 94 of the 95 user queries. One query did not produce any scrambled queries

at low scrambling. At higher volume, ironically, effectiveness slightly decreased, an effect

we attribute to averaging only the 55 user queries having numbers of low-scrambled

queries in the 26–50 range. Effectiveness decreased fast—below ten and even five docu-

ments—at medium or high scrambling.

Table 2 RG privacy; fraction of the top-50 target documents found by the top-v scrambled queries

v g ¼ gq g ¼ 2 gq g ¼ 4 gq g ¼ 8 gq

aDF mDF aDF mDF aDF mDF aDF mDF

2 .442 .271 .397 .163 .253 .087 .147 .033

10 .623 .423 .628 .253 .441 .137 .267 .068

50 .767 .571 .721 .383 .577 .206 .402 .126

2 95 95 95 95 95 94 94 88

10 95 95 95 95 95 90 94 82

50 95 95 95 94 94 88 91 69

The bottom half of the table shows the number of test private queries contributing to the averages. As
privacy requirements increase, some of the private queries may have no or not enough scrambled queries at
the requested volume; these private queries cannot be scrambled, thus they are excluded. This issue can be
overcome by using larger sample sizes

Table 3 AG privacy; fraction of the top-50 target documents found by the top-v scrambled queries

v g ¼ :0064 g ¼ :0128 g ¼ :0256 g ¼ :0512

aDF mDF aDF mDF aDF mDF aDF mDF

2 .273 .104 .270 .136 .186 .108 .156 .097

10 .425 .228 .436 .237 .319 .246 .233 .156

50 .560 .341 .530 .380 .462 .360 .319 .228

#q 69 27 82 44 87 63 94 81

The last row shows the number of user queries found to have privacy issues at a minimum required
generality level of g for aDF and mDF

344 Inf Retrieval J (2015) 18:331–358

123

The most obvious problems of the semantic approach are the following. First, not all user

queries can be scrambled at a requested scrambling intensity, due to WordNet’s ontology being

generic thus not ‘dense’ enough. The problem seems severe: at high scrambling, only 58 out of the

95 user queries had at least 1 scrambled query. Second, the levels of low/medium/high scrambling

were defined by taking arbitrary ranges of values of some semantic similarity measure between

each scrambled query and q. Thus, scrambling intensity is difficult to be explained to the end-

user: how much exposing is a scrambled query with, say, 0.8 similarity to q?

Our statistical approach does not have the problems of the semantic one. First, we

always seem to produce enough scrambled queries. This may not be the case for very small

document samples, but it does hold for our—reasonably small—5000 sample. Second, our

approach to RG can easier be explained to the end-user: the information need expressed by

a scrambled query is satisfied by at least r times more documents than her private query.

This can give her a better idea on how much she is exposed, in contrast to giving her a raw

similarity threshold as in the semantic approach.

Moreover, we seem to get much better effectiveness. Although the levels of privacy or

generalization are not absolutely identical due to the arbitrary definitions of low/medium/

high scrambling of the semantic approach, comparing the methods at minimum scrambling

(i.e. low scrambling vs. g ¼ gq) at volume 10 we see improvements of ?145 % or ?67 %

(out of 50 target documents, 12.7 found in Arampatzis et al. (2013) versus 31.1 with aDF

or 21.2 with mDF found according to the results in Table 2 multiplied by 50). Never-

theless, we should investigate which levels of privacy are roughly comparable across the

two approaches.

Let us attempt a comparison of RG at the minimum level, as well as, at levels of the

statistical approach which result to around 12.7 target documents on average for volume

10, according to Table 2. For the private user query ‘‘gun racks’’, Table 4 compares the

Table 4 Top-10 RG scrambled queries for private query ‘‘gun racks’’, number of target documents found
per query (a number in bold typeface next to a query–no number if no documents found), and the number of
distinct target results hit by all scrambled queries per column (numbers in the last row)

Semantic query scrambling Statistical query scrambling

Low scrambling Medium scrambling mDF, g ¼ gq mDF,
g ¼ 2gq

aDF, g ¼ 8gq

Weapon system
support

Device support Light replacement Air power Air power

Weapon support Instrument device Gun light 39 Light power Light power

Arm support Weapon system
instrumentation

Air book cover Weight Weight

Instrument support Weapon system
instrumentality

Electric light
machine

Accessory Accessory

Weapon system
device

Weapon instrumentation Pull Machine
power

Machine
power

Weapon device Weapon instrumentality Air kit Light supply Light model

Arm device Arm instrumentation Air cover 22 light Fire light

– Arm instrumentality Air gun home 3 Cover picture Gun 40

– Device device Light pump Light model Trailer

– Instrument instrumentation Brake Fire light Air picture

0 0 39 0 40

Inf Retrieval J (2015) 18:331–358 345

123

scrambled queries resulting from the semantic approach (the two left-most columns of

Table 4 are taken from a similar table in Arampatzis et al. (2013)) against the scrambled

queries of the statistical approach. The semantic approach is capable of generating only

seven scrambled queries at low scrambling but ten at medium scrambling. None of the

scrambled queries hit any of the target documents at any scrambling intensity. A bold

number next to a query is the number of target results hit (if any), while the last row shows

the number of distinct target results hit by all scrambled queries per column. The statistical

approach achieves good results (above the 12:7 average) in two out of three cases. Nev-

ertheless, it seems difficult to decide where the methods stand privacy-wise: is ‘‘weapon

support’’ less exposing than ‘‘gun light’’ or just ‘‘gun’’? In our opinion, the user should

have the last word on this by reviewing the set of scrambled queries before submission.

All in all, using the strictest privacy provided by mDF, we roughly matched or improved

the best retrieval result of the semantic approach, for k up to 4 and g up to 2gq or .0256 at

volume 10, and for k up to 8 and g up to 4gq or .0512 at volume 50. At lighter privacy

requirements, we outperformed the semantic approach by far. In all cases, our methods

managed to scramble all private queries where this was needed, in contrast to the semantic

approach. Moreover, we detected power-law relations between the privacy levels and

retrieval effectiveness of ABT and AG, as well as, between volume and retrieval effec-

tiveness. Thus, our methods are more well-defined and easier explained to the end-user,

can be applied to a wider-range of private information needs, are more effective and

behave predictably, retrieval-wise.

Last, there are two other advantages of our current approach over the semantic one.

First, in the semantic approach the user had to manually select the part-of-speech and sense

of every term in her query in order to select the right node in WordNet’s ontology. The

statistical approach does not require these time-consuming steps. Second, in Arampatzis

et al. (2013) we arrived at the conclusion that the best method to de-scramble ranked-lists

is to locally re-index the union of documents hit by all scrambled queries and run q against

this local index. Nevertheless, even with local re-indexing the ceiling of achievable per-

formance was not reached: there were quite a few target documents retrieved by scrambled

queries that could not be locally ranked in the top-50. This was attributed to having biased

DF statistics in the local index due to the fact that the local documents represented a far

from uniform collection sample: they were all retrieved by a set of semantically-related

scrambled queries. The document sample used by our approach is more representative of

the remote collection, so its DF statistics can be used in the local re-indexing approach

removing most of the bias.

6 A set covering approach

After having established the feasibility of our query scrambling approach and the improved

results with respect to previous work, we proceed with an independent experiment that

extends our work and shows strong evidence about the possibilities of further optimization.

In particular, first we see the problem of ranking candidate scrambled queries as a set

covering problem (Sect. 6.1). Then, in Sect. 6.2, we present an approach based on expo-

nential weights to guide the covering algorithm of the target results and show further

improvements in retrieval effectiveness.

346 Inf Retrieval J (2015) 18:331–358

123

6.1 Algorithmic foundations of query scrambling

From an algorithmic point of view, the query scrambling approach is a set covering problem

(Caprara et al. 1998); there is a set of documents, the target results of the private query are a

specific subset of this set, and one tries to ‘cover’ all the target results by retrieving sets of

scrambled results. The definition of the original set covering problem follows.

Definition 1 (Set Covering) Given a collection S of subsets of a finite set B, a cover of B

is a subset C of S, such that the union of the sets in C is equal to B that is, each item of B is

covered.

In the context of this work, B is the set of the results to the user query, S is the collection

of the results to scrambled queries (one set of results for each scrambled query) and C � S

is a set of scrambled results that cover the set B.

Set covering is a fundamental combinatorial problem and one of the first to be shown to

be NP-complete (Karp 1972). There are various extensions of the original set covering

problem. One of them is particularly interesting for this work and is called red-blue set

covering (Carr et al. 2000). In red-blue set covering the items are distinguished into red

and blue and the objective is to find a cover of the blue items which minimizes the number

of red items covered. The formal definition of red-blue covering follows.

Definition 2 (Red-blue set covering) Given a finite set of ‘red’ elements R, a finite set of

‘blue’ elements B and a family S � 2R[B, the red-blue set cover problem is to find a

subfamily C � S which covers all blue elements, but which covers the minimum possible

number of red elements.

In the context of query scrambling, the blue elements would be the target results, while

the red elements would be the rest of the documents in the document collection. However,

the objectives of query scrambling are more subtle and cannot be completely captured with

red-blue set covering. For example, a perfect solution for red-blue set covering without any

red elements (if possible), would not be very attractive for query scrambling, because the

target results of the seed query would be identifiable and this would reveal important

information about the private query.

For the needs of query scrambling we define scrambled set covering, a multi-objective

extension of set covering (Fig. 1).

Query ResultsScrambled Query Results DocsFig. 1 Query scrambling as a set
covering problem

Inf Retrieval J (2015) 18:331–358 347

123

Definition 3 Scrambled Set Covering SSCðv; k; gÞ: Given a finite universe U of all

documents of a collection, a partition of U into sets Hq and U � Hq, and a collection S of

subsets of U, the requirement is to find a subset C of S to satisfy the following objectives

and/or constraints:

i. maximize ð
S

Hw2C HwÞ
T
Hq, i.e., to maximize the coverage of Hq,

ii. jCj � v, where v is the maximum number of scrambled queries,

iii. for each Hw 2 C, the corresponding scrambled query w must satisfy kw [k,

iv. for each Hw 2 C, the corresponding scrambled query w must satisfy gw [g.

Note that the last definition supports both primitive privacy criteria, k-anonymity and

generality g, and any combination of them. Consequently, any query scrambling task with

one or more of the criteria ABT, RG and AG can be formulated as an instance of

SSCðv; k; gÞ.
In this work, we supply bounds on the size of C, the index k and the index g, and optimize

the coverage of the items in Hq. One may define other variations of SSC by switching the

objective function with one of the constraints or defining an objective function comprising

more than one constraints, for example minimizing a weighted sum of k and g. Moreover,

scrambled set covering can be extended with further objectives, like the maximum number

of times any item of Hq or any item of U � Hq can appear in the cover, etc.

The computational complexity of SSCðv; k; gÞ can easily be shown to be NP-Complete

by reducing it to the original set covering problem. Moreover, the approximability of

scrambled set covering with respect to objective (ii) cannot better than log n where n is the

number of the target results, since this bound holds for the original set covering problem

(Lund and Yannakakis 1994). The results on the approximability of red-blue set covering

presented in Carr et al. (2000) do not fit the SSC problem.

6.2 A guided covering approach

We use an approach based on set covering to guide the selection of the scrambled queries.

Since the scrambled set covering problem (Definition 3) is NP-Complete, we will not try to

solve it optimally. Instead, we will devise a polynomial time greedy algorithm as a

heuristic for the query scrambling task. Note that greedy algorithms are a popular way to

deal with set covering problems (Chvatal 1979; Young 2008). Given a private query q, let

tq ¼ minf10; dfqg. Moreover, let Tq be a set of the top tq documents that q hits in the

sample collection. Instead of choosing scrambled queries based only on the MI criterion,

we will choose them incrementally while keeping track if and how many times each

document in Tq has been hit so far.

We present the following greedy algorithm with exponential weights for covering the

documents in Tq. Each item i in Tq has an initial weight bi of one, and this weight is

multiplied by f ¼ 0:5 every time the document is covered by a scrambled query that is

selected. In each round, a score for each candidate scrambled query is calculated. The

scrambled query with the best score is selected and the weights of all items in Tq are

updated. The process is repeated until t scrambled queries are selected.

More precisely, let tq and Tq be as defined above. Let Cq be the set with the incremental

outcome of the algorithm. Initially, Cq ¼ ;. Let Sq be the set of candidate scrambled

queries for q. We will run experiments for volume sizes t ¼ 2, 10, and 50, as in the

previous sections. We bound the size of Sq by n ¼ 2v2
max þ 1, where vmax is the maximum

348 Inf Retrieval J (2015) 18:331–358

123

volume size. This size assures a sufficiently large pool of documents for the covering

algorithm, while keeping the computational complexity of the algorithm under control.13

Since in this set of experiments vmax is 50, the maximum size of Sq is 2 � 502 þ 1 ¼ 5001

scrambled queries achieving the highest MI scores (see Sect. 4.3). The precision and the

recall of each scrambled query are estimated with the documents frequencies (dfq, dfw and

dfq;w). The initial weight of each document i in Tq is bi ¼ 1, and the discount factor is

f ¼ 0:5.

1. The following steps 2 and 3 are repeated tq times.

2. For each scrambled query j in Sq n Cq, (that is, the set difference j 2 Sq and j 62 Cq),

calculate a score

rj ¼
X

j hits i

bi

 !

� maxfPrecisionj;Recalljg: ð4Þ

3. The scrambled query j 2 SqnCq that achieves the highest score rj is added to Cq.

4. For each document i hit by the scrambled query j, update bi ¼ f � bi.
The score rj as defined in Eq. 4 weighs two criteria for the incremental selection process;

the retrieval effectiveness of each potential scrambled query and the current coverage level

of each of the documents that have to be covered. A scrambled query with a high precision

or high recall is amplified with respect to other candidate scrambled queries. This heuristic

achieved the best results in our tests. The overall selection procedure is a greedy set

covering algorithm adapted to the needs of our query scrambling approach.

We performed a large set of experiments, which showed that the retrieval results are

improved with this guided covering algorithm. The improvement is more evident for larger

sample sizes. This is a rather expected outcome, since larger samples can offer more

accurate statistics about the underlying collection. We do not present the results of all the

above-mentioned experiments here for space reasons; we just present some results with a

larger sample size and smaller numbers of retrieved and targeted documents, as an indi-

cation of how the methods work for different parameters.

In Tables 5, 6, and 7 we present the comparative results of the MI-based approach

(basic) and the covering-based approach when a 20,000 document sample is used. In these

experiments, we evaluated the number of target top-10 documents found in the union of the

top-100 documents retrieved by all scrambled queries. The results show consistent im-

provements in almost all cases (italicized) of about 3:1% on average (3:8% for ABT,

2:9% for RG, and 2:3% for AG), where each improvement is calculated as the average

difference between the effectiveness of the covering-based algorithm and the basic

algorithm.

The results of the basic method presented in Tables 5, 6, and 7 are generally slightly

worse than the results presented in Tables 1, 2, and 3. Since background experiments have

shown that increasing the sample size improves effectiveness, we are inclined to blame the

worse performance in the latter three tables on the more challenging task of targeting the

13 This formula has its roots in clustering, where a commonly used rule-of-thumb for the number of clusters

v to look for in n data points is v �
ffiffiffiffiffiffiffiffi
n=2

p
. We apply this rule-of-thumb in reverse: when going for volume v

we use the top n ¼ 2v2 þ 1 data points (scrambled queries); the ?1 is immaterial. The problem can indeed
also be solved with clustering: first cluster the top-n scrambled queries into v clusters with queries hitting
similar sets of documents within each cluster, and then select one representative scrambled query from each
cluster.

Inf Retrieval J (2015) 18:331–358 349

123

top-10 instead of the top-50, in percentage/fraction terms, in combination with retrieving

only the top-100 documents per scrambled query instead of the top-1000. However, we

find the setup used in this Section more realistic for web retrieval (where the first page of

top-10 results matters most) and it is more efficient (faster).

We would like to note that in the set covering-based approach that we presented, the

selection priority of the scrambled queries is a combination of the covering criterion and

the statistical MI criterion. Consequently, the concept of set covering is used as an add-on

on top of the statistical method. We consider the results of this section as a ‘‘proof of

concept’’ that the statistical query scrambling approach can be further enhanced with

algorithmic techniques. However, the idea to exploit the combinatorial nature of the

Table 5 ABT privacy; MI-based (basic) versus covering-based selected scrambled queries

v Unfiltered k ¼ 1 k ¼ 2 k ¼ 4 k ¼ 8 k ¼ 16

aDF mDF aDF mDF aDF mDF aDF mDF aDF mDF aDF mDF

Basic 2 .576 .631 .543 .576 .345 .214 .201 .071 .147 .024 .088 .027

10 .732 .795 .706 .755 .587 .383 .394 .167 .281 .084 .205 .047

50 .831 .868 .807 .847 .746 .564 .566 .285 .440 .151 .304 .089

Covering 2 .616 .737 .573 .705 .415 .240 .228 .113 .195 .038 .131 .032

10 .734 .844 .714 .815 .624 .427 .449 .212 .345 .114 .228 .062

50 .814 .887 .799 .884 .767 .618 .611 .353 .489 .198 .323 .104

Table 6 RG privacy; MI-based (basic) versus covering-based selected scrambled queries

v g ¼ gq g ¼ 2 gq g ¼ 4 gq g ¼ 8 gq

aDF mDF aDF mDF aDF mDF aDF mDF

Basic 2 .407 .194 .362 .116 .239 .066 .188 .030

10 .586 .314 .545 .211 .405 .138 .314 .066

50 .722 .462 .679 .289 .569 .183 .413 .116

Covering 2 .438 .244 .400 .173 .318 .088 .203 .035

10 .632 .365 .592 .243 .459 .139 .328 .070

50 .746 .479 .708 .329 .599 .189 .425 .101

Table 7 AG privacy; MI-based (basic) versus covering-based selected scrambled queries

v g ¼ :0064 g ¼ :0128 g ¼ :0256 g ¼ :0512

aDF mDF aDF mDF aDF mDF aDF mDF

Basic 2 .221 .111 .211 .110 .163 .093 .078 .057

10 .403 .206 .329 .218 .236 .157 .152 .115

50 .543 .344 .437 .304 .315 .203 .185 .138

Covering 2 .295 .097 .253 .145 .191 .114 .097 .094

10 .443 .258 .371 .220 .261 .152 .167 .120

50 .570 .347 .455 .322 .331 .228 .200 .158

#q 80 36 83 51 89 69 94 87

350 Inf Retrieval J (2015) 18:331–358

123

underlying algorithmic problem in order to guide the scrambled query selection process

needs further investigation, which is outside of the scope of this work, and may be part of

our future work.

7 Evaluating perceived privacy via a user study, and system usefulness

Our privacy criteria are based on statistical considerations of term co-occurrence. In order

to investigate the privacy level that the end-users actually perceive, we conducted a user

study.

We selected a subset of ten private queries from our experimental setup, reported in

Table 8, trying to cover diverse categories from the full 95 query set. For those, we

generated scrambled queries using a 20,000 documents sample of ClueWeb09_B. We

assumed a web-search setup and targeted the top-10 documents in ClueWeb09_B, re-

trieving the top-100 per submitted scrambled query. The fraction of the target documents

found by the union of results of the best 2 or 10 scrambled queries (according to MI) is

shown in the top part of Tables 9 and 10 (row labeled ‘Retrieval’), for the two privacy

criteria and several privacy levels and methods. The results seem generally better that the

corresponding results of Sect. 5, but they are not directly comparable since here we use a

larger sample, only 10 private queries, retrieve the top-100 per scrambled query (not the

top-1000) and target only the top-10 (not the top-50) results of the remote engine.

Thirty 3rd-year students at the Electrical & Computer Engineering department of

Democritus University of Thrace, Greece, participated in the experiment. They were asked

to imagine having an information need expressed by each of those queries at a time

(together with their categories) and that they want to keep this need private. Then, they

were shown a list of scrambled queries and asked to mark those queries that expose their

Table 8 Private queries used in the user study

Query (category)

Acute hepatitis (medical) Symptoms of bone infection (medical)

Hacking Yahoo passwords (crime/cyber-crime) How to make bombs (crime/terrorism)

Illegal drugs (addiction) Rehabs in Harrisburg PA (addiction)

Sex toys (sex) Free porn movies (sex)

Wedding invitations (personal/social) Local dating (personal/social)

Table 9 ABT retrieval, privacy and usefulness

v k ¼ 1 k ¼ 2 k ¼ 4 k ¼ 8 k ¼ 16

aDF mDF aDF mDF aDF mDF aDF mDF aDF mDF

Retrieval 2 .800 .790 .340 .320 .230 .160 .110 .000 .030 .000

10 .960 .950 .800 .540 .480 .260 .290 .170 .220 .010

Privacy 2 .115 .188 .548 .798 .730 .895 .878 .947 .938 .952

10 .227 .263 .618 .857 .799 .919 .897 .957 .952 .970

Usefulness 2 .201 .304 .420 .457 .350 .271 .196 .000 .058 .000

10 .367 .412 .697 .663 .600 .405 .438 .289 .357 .020

Inf Retrieval J (2015) 18:331–358 351

123

specific need (ABT privacy), and those queries that expose their specific need or expose

them in another similar or worse way (RG privacy). The keywords in multi-term scrambled

queries were sorted in a decreasing document frequency (i.e. most to least general), trying

to achieve a more ‘natural’ query look (think, e.g., of ‘‘bad wolf’’ vs. ‘‘wolf bad’’).

We did not evaluate AG privacy; in preliminary tests, we found it especially difficult to

formulate the right question to the users. AG privacy is not directly connected to the

information need but rather to environmental (e.g. societal) and/or cultural factors affecting

the user. It seemed that AG privacy could better be used in an interactive environment

where users turn the ‘knob’ until they deem the candidate scrambled queries as ‘safe’ with

respect to their own, possibly completely different, reasons. A user study of AG privacy

would have required a completely different setting.

The middle part of Tables 9 and 10 (row labeled ‘Privacy’) shows the fraction of the

submitted scrambled queries that were deemed ‘safe’ by users. The trade-off between

retrieval effectiveness and perceived/achieved privacy is now obvious. At the largest

values of the privacy levels shown, we get perceived privacy of 88.5–99.2 %. in this

respect, we investigated a good range of parameter values. The numbers also confirm that

mDF indeed provides stricter privacy than aDF.

Operationally, the usefulness of such a query scrambling system should be measured by

both the privacy and retrieval quality it achieves. Best retrieval with no privacy or full privacy

with no target results both defeat the purpose. In this respect, we can provide a measure of

usefulness by averaging retrieval and privacy effectiveness; the low part of the tables shows

their harmonic average. The harmonic average is biased to the smaller of retrieval and

privacy; it is more appropriate than their arithmetic average since it captures better the fact

that having one without the other defeats the purpose. Roughly, for ABT, usefulness peaks at

around k ¼ 2 for both aDF and mDF; but with aDF the system seems usable in a wider k-

range from k ¼ 1 up to k ¼ 16. Similarly for RG, with aDF the system is usable in a wider

g-range than with mDF, and usefulness seem to peak between 2gq and 4gq.

In any case, the perceived privacy is less than 100 % for many of the private infor-

mation needs we experimented with, suggesting that such a tool should, at least in some

cases, not be run in a fully automatic way. To assure privacy or at least to keep privacy

leakage under control at the user side, sets of candidate scrambled queries could be first

presented to the user and some of the suggested queries may have to be discarded

manually. Such a tool, nevertheless, shows a great potential in pre-selecting good

scrambled query sets, minimizing the user effort. Although our privacy criteria are simple

and word-frequency based, this study shows that they are strong indicators of what users

perceive as private.

Table 10 RG retrieval, privacy and usefulness

v g ¼ gq g ¼ 2 gq g ¼ 4 gq g ¼ 8 gq

aDF mDF aDF mDF aDF mDF aDF mDF

Retrieval 2 .540 .290 .380 .080 .320 .070 .200 .070

10 .860 .530 .800 .080 .690 .190 .320 .070

Privacy 2 .348 .837 .658 .950 .713 .975 .885 .987

10 .514 .866 .685 .975 .808 .986 .916 .992

Usefulness 2 .423 .431 .482 .148 .442 .131 .326 .131

10 .643 .658 .738 .148 .744 .319 .474 .131

352 Inf Retrieval J (2015) 18:331–358

123

7.1 Inter-user agreement

Table 11 shows the total number of scrambled queries evaluated by each user for all ten

private information needs and the inter-user agreement on the ‘safety’ of scrambled

queries, per privacy type and method. While the observed agreements are strong (75.3–

93.3 %), the expected by-chance agreements are also strong (58.6–91.0 %) revealing that

the rating distributions are skewed: the largest percentage of scrambled queries are deemed

as private, from the viewpoint of each user. On the one hand, this means that our methods

produce mostly ‘safe’ scrambled queries, especially in the case of RG/mDF (very few

scrambled queries are marked as ‘unsafe’ per user since the expected agreement is 91.0 %)

as it was expected by its high privacy seen in Table 10. On the other hand, Fleiss’ j (Fleiss

1971) and average pairwise Cohen’s j (Cohen 1960) show weaker agreements; both these

measures correct agreement rates for the rate of chance agreement.

Common guidelines used in the literature for j values characterize 0.21–0.40 as ‘fair’

and 0.41-0.60 as ‘moderate’ agreement. Such guidelines are however by no means uni-

versally accepted and they are rather based on personal opinion. Under these common

guidelines, we get a moderate agreement for ABT privacy and a fair agreement for RG

privacy. In this respect, RG privacy seems like a more ‘personal’ matter than ABT privacy.

Concerning the methods, there is no consistent pattern: mDF produces higher agreement in

ABT privacy, while aDF produces higher agreement in RG privacy.

Manning et al. (2008) suggest that ‘‘agreement below 0.67 is seen as data providing a

dubious basis for an evaluation [of relevance], though the precise cutoffs depend on the

purposes for which the data will be used.’’ Inter-judge agreement of relevance has been

measured within the TREC evaluations and for medical IR collections: the level of

agreement normally falls in the range of 0.67–0.8 and characterized as ‘fair’. In any case,

all our privacy agreements—as measured with two versions of j here—fall in the range of

0.228–0.559, thus they are weaker than a typical relevance agreement. Our weaker

agreements may be attributed to the notion of privacy being more subjective than

relevance.

8 Practical feasibility: a field experiment

In this section, we investigate the applicability of our query scrambling approach on real

web search engines. We apply and evaluate query scrambling against the popular web

search engine of Google.

In our approach for query scrambling, a prospective user has to build a sample col-

lection of the documents indexed by a search engine, generate scrambled queries for each

Table 11 Inter-user agreement
of the thirty users on the ‘safety’
of scrambled queries, per privacy
type

No. of scrambled queries ABT RG

aDF mDF aDF mDF
463 482 365 371

Observed agreement .775 .847 .753 .933

Expected agreement .586 .665 .625 .910

Fleiss’ j .458 .544 .342 .251

Avg. pairwise Cohen’s j .468 .559 .341 .228

Inf Retrieval J (2015) 18:331–358 353

123

private query, submit them in a privacy-preserving way to the search engine, and, finally,

collect the scrambled results and identify the target results in them. We are well aware that

the above steps are not trivial.

One may dismiss this as an unrealistic approach and contend that we cannot expect

users to perform all the above steps. However, the protection of user privacy for certain

web searches can be of crucial importance for privacy, economic, political, or democratic

reasons, and users may take the cost to use query scrambling, if they have the option to do

it. Query scrambling is not intended to displace regular web searches; it should only be

applied selectively for really sensitive web searches. In this case, the overhead for the user

should be well-justified.

In any case, all the steps required can be packaged in an application and performed

automatically. Furthermore, document samples of search engines may be centrally dis-

tributed, often enough (similarly to signature databases for anti-virus applications), by a

provider/vendor who does not have to be necessarily trusted. Updated samples also solve

the problem of non-static document collections indexed by search engines. In this sense,

our solution is feasible and practical, since a single user with commodity hardware re-

sources can use it; there are no assumptions about special search engines or trusted parties.

One may also doubt the feasibility of the approach when using a real web search engine

like Google or Bing and that it will retrieve any useful results. To investigate this issue, we

built some prototype components and conducted a field experiment of query scrambling on

a real web search engine. We chose Google for the experiment, but other web search

engines like Bing or Baidu could also be used.

First, we created two query-based samples of the search engine’s document collection.

We used the sampling algorithm described in Sect. 3. We built two samples, one of 50K

documents and one of about half the size, 23K documents. The small sample is a snapshot

taken during the construction of the large one.

To significantly reduce the number of queries submitted to the search engine, a set of 12

private queries was chosen, the number of target results per private query and the number

of retrieved results per scrambled query were reduced to 10 and 100, respectively. Finally,

we run experiments for scrambled query volume t ¼ 50 and privacy criterion ABT with

k ¼ 1 using mDF. For this experiment, we chose the minimum privacy in order to in-

vestigate the retrieval effectiveness of our approach; additionally, we were more interested

in the feasibility of the infrastructure needed and indicative time consumption. The out-

come, however, was better than expected, which clearly calls for further experiments with

higher privacy guarantees.

The field experiment was executed mainly with the same algorithms and tools that we

used in our main experiments in Sect. 5. The first challenge was to submit the scrambled

queries in such a way that the queries are unlinkable to each other, i.e., it should not be

possible for the search engine to find out which scrambled queries correspond to the same

private information need. The second challenge was that we had to retrench our query

submissions in order to avoid excessive load on commercial search engines and the risk of

our clients being locked out.

There are several ways to deal with these challenges, like for example using the Tor

anonymity network, using anonymity proxies, or some crowd-based approach, and none of

them was trivial. We opted for a crowd-sourcing approach where a set of volunteers agreed

to submit queries on behalf of our query scrambling coordinator. Each volunteer client

simply installed a dedicated Chrome extension which took over the interaction with the

coordinating server of the experiment.

354 Inf Retrieval J (2015) 18:331–358

123

We managed to build a community of about 30 clients/volunteers, with each client

submitting a query every few minutes (while the client was up). The samples were built

during November and December 2012, and the private queries were issued in December

2012. The same crowd-sourcing platform was used for both tasks, creating the samples and

running the scrambled queries. More precisely, it took about 6 weeks to create both

samples, and about a week to run the scrambled queries. The total number of ‘transactions’

with the search engine for the complete set of query scrambling experiments (not including

the generation of the samples) was: (12 private queries) 	 (volume 50) 	 (10 pages with

results for each scrambled query) 	 (2 samples) = 12,000, plus the 12 private queries for

the ground truth. With an average number of ten clients active at any time and each client

submitting one query (requesting ten results) approximately every 8 min, it took less than

7 days to retrieve the results for all scrambled queries from Google. None of the par-

ticipants reported any significant (or even noticeable) computational load during the ex-

periment. The computational load for a normal user of our query scrambling solution

would probably not be different.

We were positively surprised by the high quality of the results, especially when the

larger sample was used (Table 12). When using the 50K sample. we retrieved nine or ten

target documents for most private queries, and the others do not fall far behind. Admit-

tedly, this is a small-scale experiment with the lightest privacy requirements, but the

outcome indicates the feasibility and the potential of our query scrambling approach.

We performed a failure analysis on the two worst-performing queries, i.e. ‘‘israel po-

litical system’’ and ‘‘how to make bombs’’. Their inferior performance was traced to the

following factors: (a) the documents in our samples, unfortunately, do not seem to cover

the topic of ‘‘israel political system’’, pointing to the need of larger samples, and

(b) Google is not exactly a bag-of-words engine; phrases like ‘‘how to’’, ‘‘what is’’, and

others, seem to have a special meaning and thus weighted more heavily, while in our case

these are just bags of high frequency unimportant words which do not influence much the

scoring/ranking. Furthermore, while query word order seem to matter in Google, this did

not seem to have an adverse effect in our experiment.

Operationally, the long times consumed indicate that document samples should be

constructed and distributed to interested first-time or occasional users by a central authority

Table 12 Query Scrambling on
Google: number of top-10 target
documents found by 50 scram-
bled queries

Private query 23K sample 50K sample

Acute hepatitis 4 6

Cancer society 4 6

Car radar detectors 7 10

Computer game cracks 5 9

Hacking yahoo passwords 8 7

How can aids be transferred 7 6

How to make bombs 5 5

Illegal drugs 9 9

Israel political system 2 3

Microsoft product keys 9 9

Symptoms of bone infection 6 9

Windows rootkit 1 9

Average 5.6 out of 10 7.3 out of 10

Inf Retrieval J (2015) 18:331–358 355

123

(vendor) or in some community-based manner in regular time intervals, and that many

more clients than just 30 should participate in such a crowd-sourcing approach in order to

reduce task completion times. Regular users of query scrambling could have their own low

priority sampling task constantly running in the background at their side. Then, given the

appropriate sample, the scrambling of a single private query could take from a few seconds

to several hours, depending on the privacy measures taken for the submission of the

scrambled queries.

9 Conclusion

We introduced a method for search privacy on the Internet, which is orthogonal to—and

should be combined with—standard methods such as using anonymized connections,

agents, obfuscating by random additional queries or added keywords, and other techniques

reducing private information leakage. The method enhances plausible deniability towards

query-logs by employing alternative less-exposing queries for a private query. More im-

portantly, the proposed approach does not disclose the original search query—and thus the

exact search interest of the user—to any party, including the search engine. We defined and

modeled theoretically three types of privacy, providing a framework on which similar

approaches may be built in the future.

In contrast to previous literature, we followed a statistical approach which does not use

word/concept ontologies, semantic analysis or natural language processing. We investi-

gated the practical feasibility of the proposed method and the trade-off between quality of

retrieved results and privacy enhancement. In Arampatzis et al. (2011), the best result was

25 % of the top-50 target documents found, and was achieved at the lightest possible

privacy requirements; our method can match this at higher-than-minimum privacy levels

and for more and better-defined privacy types which can easier be explained to the end-

user. At our lightest privacy level, our method outperforms the semantic one by far; we

retrieve up to 56–76 % of the target results. Moreover, our method can be applied to a

wider range of information needs and performs more predictably retrieval-wise.

The guided covering algorithm showed that the retrieval effectiveness can be further

improved by carefully guiding the scrambled query selection process. Even though the

improvements were small, we consider them very important because (a) they occurred in

almost all cases we examined, and (b) the size of the sample that was used to guide the

covering procedure was minuscule with respect to the size of the collection, nevertheless,

covering the sample seemed to still transfer to the whole collection. Furthermore, the field

experiment on Google showed that our approach, even though time-consuming, is prac-

ticable on real search engines.

While it is easy to evaluate the retrieval effectiveness of our methods, we evaluated the

actual privacy perceived by end users via a user study. The study showed that our simple

word- and phrase-frequency based criteria can be strong indicators of what users find

acceptable and safe from a privacy perspective. A further outcome is that even in cases

where the average level of privacy of the scrambling tools is high, it may not be possible to

assure 100 % privacy in a fully automatic way. This suggests that users should specify

their privacy requirements in a very conservative way, or for even higher assurance, they

may opt to review the set of scrambled queries supplied by the system, discarding queries

they find ‘unsafe’.

356 Inf Retrieval J (2015) 18:331–358

123

Acknowledgments The material in Sect. 8 was contributed by George Stamatelatos, master’s student at
the Electrical & Computer Engineering department, Democritus University of Thrace, Greece.

References

Arampatzis, A., Kamps, J., & Robertson, S. (2009). Where to stop reading a ranked list: Threshold opti-
mization using truncated score distributions. In SIGIR, ACM (pp. 524–531).

Arampatzis, A., Efraimidis, P., & Drosatos, G. (2011). Enhancing deniability against query-logs. In ECIR,
Springer, lecture notes in computer science (Vol. 6611, pp. 117–128).

Arampatzis, A., Efraimidis, P. S., & Drosatos, G. (2013). A query scrambler for search privacy on the
internet. Information Retrieval, 16(6), 657–679.

Barbaro, M., & Zeller, T. (2006). A face is exposed for AOL searcher no. 4417749. Accessed June 5, 2014.
http://www.nytimes.com/2006/08/09/technology/09aol.html.

Bhagat, S., Weinsberg, U., Ioannidis, S., & Taft, N. (2014). Recommending with an agenda: Active learning
of private attributes using matrix factorization. In Proceedings of the 8th ACM conference on rec-
ommender systems (pp. 65–72). New York: ACM. RecSys ’14. doi:10.1145/2645710.2645747.

Boneh, D., & Waters, B. (2007). Conjunctive, subset, and range queries on encrypted data. In Theory of
cryptography, lecture notes in computer science (Vol. 4392, pp. 535–554). Berlin: Springer. doi:10.
1007/978-3-540-70936-7_29.

Bouma, G. (2009). Normalized (pointwise) mutual information in collocation extraction. In Proceedings of
GSCL (pp. 31–40). http://www.ling.uni-potsdam.de/ gerlof/docs/npmi-pfd.pdf.

Brown, P. F., Pietra, V. J. D., de Souza, P. V., Lai, J. C., & Mercer, R. L. (1992). Class-based n-gram models
of natural language. Computational Linguistics, 18(4), 467–479.

Callan, J. P., & Connell, M. E. (2001). Query-based sampling of text databases. ACM Transactions on
Information Systems, 19(2), 97–130.

Cao, N., Wang, C., Li, M., Ren, K., & Lou, W. (2014). Privacy-preserving multi-keyword ranked search
over encrypted cloud data. Parallel and Distributed Systems, IEEE Transactions on, 25(1), 222–233.
doi:10.1109/TPDS.2013.45.

Caprara, A., Fischetti, M., & Toth, P. (1998). Algorithms for the set covering problem. Annals of Operations
Research, 98, 2000.

Carpineto, C., & Romano, G. (2013). Semantic search log k-anonymization with generalized k-cores of
query concept graph. In Advances in information retrieval, lecture notes in computer Science (Vol.
7814, pp. 110–121). Berlin: Springer. doi:10.1007/978-3-642-36973-5_10.

Carr, R. D., Doddi, S., Konjevod, G., & Marathe, M. (2000). On the red-blue set cover problem. In
Proceedings of the eleventh annual ACM-SIAM symposium on Discrete Algorithms (pp. 345–353).
Philadelphia: Society for Industrial and Applied Mathematics. SODA ’00, http://dl.acm.org/citation.
cfm?id=338219.338271.

Castellà-Roca, J., Viejo, A., & Herrera-Joancomartı́, J. (2009). Preserving user’s privacy in web search
engines. Computer Communications, 32(13–14), 1541–1551. doi:10.1016/j.comcom.2009.05.009.

Chvatal, V. (1979). A greedy heuristic for the set-covering problem. Mathematics of Operations Research,
4(3), 233–235. doi:10.2307/3689577.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Mea-
surement, 20(1), 37.

Domingo-Ferrer, J., Bras-Amorós, M., Wu, Q., & Manjón, J. A. (2009). User-private information retrieval
based on a peer-to-peer community. Data & Knowledge Engineering, 68(11), 1237–1252.

Domingo-Ferrer, J., Solanas, A., & Castellà-Roca, J. (2009). h(k)-private information retrieval from privacy-
uncooperative queryable databases. Online Information Review, 33(4), 720–744. doi:10.1108/
14684520910985693.

Fleiss, J., et al. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin,
76(5), 378–382.

Hannak, A., Sapiezynski, P., Molavi Kakhki, A., Krishnamurthy, B., Lazer, D., Mislove, A., & Wilson, C.
(2013). Measuring personalization of web search. In Proceedings of the 22nd international conference
on World Wide Web (pp. 527–538). Republic and Canton of Geneva: International World Wide Web
Conferences Steering Committee. WWW ’13. http://dl.acm.org/citation.cfm?id=2488388.2488435.

Howe, D. C., & Nissenbaum, H. (2009). TrackMeNot: Resisting surveillance in web search. In I. Kerr, C.
Lucock, & V. Steeves (Eds.), Lessons from the Identity trail: Anonymity, privacy, and identity in a
networked society (Chap 23, pp. 417–436). Oxford: Oxford University Press.

Inf Retrieval J (2015) 18:331–358 357

123

http://www.nytimes.com/2006/08/09/technology/09aol.html
http://dx.doi.org/10.1145/2645710.2645747
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://www.ling.uni-potsdam.de/%20gerlof/docs/npmi-pfd.pdf
http://dx.doi.org/10.1109/TPDS.2013.45
http://dx.doi.org/10.1007/978-3-642-36973-5_10
http://dl.acm.org/citation.cfm?id=338219.338271
http://dl.acm.org/citation.cfm?id=338219.338271
http://dx.doi.org/10.1016/j.comcom.2009.05.009
http://dx.doi.org/10.2307/3689577
http://dx.doi.org/10.1108/14684520910985693
http://dx.doi.org/10.1108/14684520910985693
http://dl.acm.org/citation.cfm?id=2488388.2488435

Karp, R. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.),
Proceedings of a Symposium on the Complexity of Computer Computations, held March 20-22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY, The IBM Research Symposia
Series, Complexity of computer computations (pp. 85–103). New York: Plenum Press.

Lindell, Y., & Waisbard, E. (2010). Private web search with malicious adversaries. In Privacy enhancing
technologies, lecture notes in computer science (Vol. 6205, pp. 220–235). Berlin: Springer. doi:10.
1007/978-3-642-14527-8_13.

Lund, C., & Yannakakis, M. (1994). On the hardness of approximating minimization problems. Journal of
the ACM (JACM), 41(5), 960–981. doi:10.1145/185675.306789.

Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge:
Cambridge University Press.

Murugesan, M., & Clifton, C. (2009). Providing privacy through plausibly deniable search. In SDM, SIAM
(pp. 768–779).

Pass, G., Chowdhury, A., & Torgeson, C. (2006). A picture of search. In InfoScale ’06: Proceedings of the
1st international conference on scalable information systems. New York: ACM Press.

Peddinti, S. T., & Saxena, N. (2014). Web search query privacy: Evaluating query obfuscation and
anonymizing networks. Journal of Computer Security, 22(1), 155–199. http://dl.acm.org/citation.
cfm?id=2590636.2590640.

Saint-Jean, F., Johnson, A., Boneh, D., & Feigenbaum, J. (2007). Private web search. In WPES ’07:
Proceedings of the 2007 ACM workshop on privacy in electronic society (pp. 84–90). New York:
ACM.

Sánchez, D., Castellà-Roca, J., & Viejo, A. (2013). Knowledge-based scheme to create privacy-preserving
but semantically-related queries for web search engines. Information Sciences, 218, 17–30. doi:10.
1016/j.ins.2012.06.025.

Shen, X., Tan, B., & Zhai, C. (2007). Privacy protection in personalized search. SIGIR Forum, 41(1), 4–17.
Sweeney, L. (2002). k-Anonymity: A model for protecting privacy. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 10(5), 557–570.
Terra, E. L., & Clarke, C. L. A. (2003). Frequency estimates for statistical word similarity measures. In

HLT-NAACL, Human Language Technology Conference of the North American Chapter of the As-
sociation for Computational Linguistics, May 27–June 1, Edmonton, Canada.

Tigelaar, A. S., & Hiemstra, D. (2010). Query-based sampling using snippets. In Eighth workshop on Large-
Scale Distributed Systems for information retrieval, Geneva, Switzerland, CEUR-WS, Aachen, Ger-
many, CEUR workshop proceedings (Vol. 630, pp. 9–14).

Viejo, A., & Sánchez, D. (2014). Profiling social networks to provide useful and privacy-preserving web
search. JASIST, 65(12), 2444–2458. doi:10.1002/asi.23144.

Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization. In
ICML, Morgan Kaufmann (pp. 412–420).

Young, N. E. (2008). Greedy set-cover algorithms. In M.-Y. Kao (Ed.), Encyclopedia of algorithms (pp.
379–381). US: Springer. doi:10.1007/978-0-387-30162-4_175.

358 Inf Retrieval J (2015) 18:331–358

123

http://dx.doi.org/10.1007/978-3-642-14527-8_13
http://dx.doi.org/10.1007/978-3-642-14527-8_13
http://dx.doi.org/10.1145/185675.306789
http://dl.acm.org/citation.cfm?id=2590636.2590640
http://dl.acm.org/citation.cfm?id=2590636.2590640
http://dx.doi.org/10.1016/j.ins.2012.06.025
http://dx.doi.org/10.1016/j.ins.2012.06.025
http://dx.doi.org/10.1002/asi.23144
http://dx.doi.org/10.1007/978-0-387-30162-4_175

	Versatile Query Scrambling for Private Web Search
	Abstract
	Introduction
	A statistical approach to query scrambling
	Privacy in web search
	Overview of query scrambling

	Document sampling of search engines
	Generating scrambled queries
	Dealing with multi-term private queries
	Generating multi-term scrambled queries
	Ranking scrambled queries

	Evaluation
	Datasets, tools and methods
	Results
	A comparison to semantic query scrambling

	A set covering approach
	Algorithmic foundations of query scrambling
	A guided covering approach

	Evaluating perceived privacy via a user study, and system usefulness
	Inter-user agreement

	Practical feasibility: a field experiment
	Conclusion
	Acknowledgments
	References

