Stock Price Forecasting via Sentiment Analysis on Twitter

John Kordonis
Electrical and Computer Engineering Dept.
Democritus University of Thrace
Xanthi 67 100, Greece
ioankord1@ee.duth.gr

ABSTRACT

Stock price forecasting is an important and thriving topic
in financial engineering especially since new techniques and
approaches on this matter are gaining ground constantly.
In the contemporary era, the ceaseless use of social media
has reached unprecedented levels, which has led to the be-
lief that the expressed public sentiment could be correlated
with the behavior of stock prices. The idea is to recognize
patterns which confirm this correlation and use them to pre-
dict the future behavior of the various stock prices. With no
doubt, though uninteresting individually, tweets can provide
a satisfactory reflection of public sentiment when taken in
aggregate. In this paper, we develop a system which col-
lects past tweets, processes them further, and examines the
effectiveness of various machine learning techniques such as
Naive Bayes Bernoulli classification and Support Vector Ma-
chine (SVM), for providing a positive or negative sentiment
on the tweet corpus. Subsequently, we employ the same
machine learning algorithms to analyze how tweets corre-
late with stock market price behavior. Finally, we examine
our prediction’s error by comparing our algorithm’s outcome
with next day’s actual close price. Overall, the ultimate goal
of this project is to forecast how the market will behave in
the future via sentiment analysis on a set of tweets over
the past few days, as well as to examine if the theory of
contrarian investing is applicable. The final results seem to
be promising as we found correlation between sentiment of
tweets and stock prices.

Keywords

Stock Market Prediction, Sentiment Analysis, Twitter, Ma-
chine Learning, NLP

1. INTRODUCTION

Modern data mining techniques have led to the develop-
ment of sentiment analysis, an algorithmic approach for de-
tecting the predominant sentiment about a product or com-
pany using social media data. A prominant field for the use

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PCI ’16, November 10-12, 2016, Patras, Greece
© 2016 ACM. ISBN 978-1-4503-4789-1/16/11...$15.00
DOL http://dx.doi.org/10.1145/3003733.3003787

Symeon Symeonidis
Electrical and Computer Engineering Dept.
Democritus University of Thrace
Xanthi 67 100, Greece
ssymeoni@ee.duth.gr

Avi Arampatzis
Electrical and Computer Engineering Dept.
Democritus University of Thrace
Xanthi 67 100, Greece
avi@ee.duth.gr

of sentiment analysis has been stock market forecasting, a
subject undeniably undergoing intense studies [2][3].

Nowadays, a great volume of data, which contains infor-
mation about numerous topics, is being transmitted online
through various social media. An excellent example is T'wit-
ter, where over 400 million tweets are sent daily. Though
each tweet may not be significant as a unit, a large collection
of them can provide data with valuable insight about the
common opinion on a particular subject. Gauging the pub-
lic’s sentiment by retrieving online information from Twit-
ter, can be valuable in forming trading strategies. The cor-
rect prediction about the fluctuation of stock prices depends
on many factors, and public sentiment is arguably included.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe related works about sentiment analysis
on stock prediction and in following section we propose our
model. In Section 4 we briefly discuss the datasets that we
have used for this paper and data preprocessing methods
adopted. Section 5 discusses the sentiment analysis tech-
nique we developed for the purpose of this work. Section 6
includes in detail, the different machine learning techniques
to predict the sentiment scores. In Section 7, we use the
predicted sentiment scores and investigate a technique for
forecasting stock price by exploring the correlation between
tweets and stock market. In Section 8, we summarize our
results and propose ideas for further future work.

2. RELATED WORK

Alongside the rising number of blogs and social media,
opinion mining and sentiment analysis became very popular
and began to spread. An extensive synopsis of the existing
work was presented in [7]. Wysoki’s research project had
as a goal to study stock market message boards for over
3,000 stocks to determine if a correlation between discus-
sion board message volume and message quality had any
effect on the volume or price for a stock. A key contri-
bution of this research showed a strong positive correlation
between the volume of messages posted on the discussion
boards during the hours that the stock market was not open
and the next trading day’s volume and stock returns. The
researchers stated that a tenfold increase in message post-
ings in the overnight hours led to an average increase in the
next day’s stock volume of approximately 15.6 percent and
a 0.7 percent increase in next day stock returns [7].

Along the same lines, [1] took into account messages posted
on stock-related message boards and calculated their ability
to affect the movements of stock prices. The researchers ex-
amined around 1.5 million messages posted on two message

boards for 45 companies and performed text classification
and sentiment analysis to define the sentiment of each mes-
sage. With their work they were able to show a positive
correlation between message board posts and stock price
fluctuations on the day after [1].

While both of the above projects involved stock message
discussion boards, attempts have been made in order for
modern media to be included. In particular, many have
used Facebook, Twitter and other social media platforms
in order to predict the movement of stock prices or of the
market in general. For example, [5] proposed the use of
Twitter specifically as a corpus for sentiment analysis and
refered to the methods of tweet gathering and processing.
The researchers used specific emoticons to form a training
set for sentiment classification, a method that curtailed the
need to tag tweets by hand. Their training set was divided
into positive and negative samples based on happy and sad
emoticons [5].

Undeniably, the work of [2] is amongst the most popular
on the field. In their publication, the researchers described
the use of sentiment analysis of a large corpus of Twitter
messages in order to understand the average mood of Twit-
ter users on a spesific day. Afterwards, these results became
the input into a neural network prediction engine in order
to forecast the movement of stock prices on the very next
day, with a reported 87.6 percent accuracy of prediction of
the Dow Jones Industrial Average. Even though this project
did indeed show a correlation between sentiment scores and
stock price movements, the authors also proceeded in exam-
ining a vast amount of tweets derived from all Twitter users
and not just from users directed toward the stock market.
Their effort was made in order to grasp the overall sentiment
of the Twitter population.

Furthermore, the paper of [3] achieves a 75 percent ac-
curate prediction mechanism using Self Organizing Fuzzy
Neural Networks on Twitter and DJIA feeds. In their re-
search, they created a custom questionnaire with words to
analyze tweets for their sentiment.

Last but not least, another important publication is that
of [6]. They decided to follow a more straightforward path
by focusing on the “Standard and Poor’s” (S&P) top 100
stocks, collecting only related tweets. These were then an-
alyzed in order to determine if the sentiment of a company
on Twitter has any correlation to the movement in price or
volume. [6] decided to follow the dollar symbol preceding
the stock market symbol, nomenclature popularized by the
stocktwitstook.com website and its users, in order to reduce
the large amount of “noise” on Twitter. This nomenclature
allowed them to collect only tweets that had been created
and shared by users with an interest in the stock market.
Their results indicate that the sentiment of a company on
Twitter closely follows market movements and that message
volume on Twitter is positively correlated to the trading
volume for that stock [6].

The techniques proposed by these papers provide an inter-
esting overview of sentiment analysis and how it can relate
to the stock market. However, the results seem varied and
may depend on the accuracy of a twitter sentiment classifier,
as well as the preprocessing and filtering of tweets, includ-
ing the process of choosing which tweets to use for analysis.
In this work, we emulate some of these previous works to
build a sentiment analyzer, but specifically for the Twitter
domain.

3. OUR MODEL

In this paper, we mined tweets using Twitter’s Search
API and subsequently processed them for further analy-
sis, which included Natural Language Processing (NLP) and
Sentiment Analysis. Thereafter, we applied Naive Bayes and
SVM to predict each tweet’s sentiment. By evaluating each
model for its proper sentiment classification, we discovered
that Support Vector Machines give higher accuracy through
cross validation. Despite this fact, we continued to take
into consideration both techniques and compare every time
their accuracy. After predicting every tweet’s sentiment, we
mined historical stock data using Yahoo finance API. We
then created a respective feature matrix for stock market
prediction using sentiment score and stock price’s change
for each day and at the end we proposed our own trading
strategy.

text preprocessing

Naive Bayes sentiment score (daily)
Twitter / Machine Lea
) L ——

svm
Machine Leaming =3 PREDICTION

current day's price for evaluation
stock market (daily)
normalization

Figure 1: Flow diagram of Algorithmic model.

4. DATASET

We used two live fed datasets:

e Stock Prices obtained using Yahoo! Finance API. This
dataset consists of the Open, Close, High and Low
values for each day.

e We obtained also a collection of tweets using Twit-
ter’s Search API. For each tweet these records provide
a tweet id, the timestamp and tweet text, which is
by design limited to 140 characters and needs to be
filtered from noise. Since we perform our prediction
and analysis on a daily basis, we split the tweets by
days using the timestamp as the main index of the
dataframe.

Stock Data Preprocessing

The data we collected from Yahoo! Finance had to be
preprocessed in order to become suitable for further reli-
able analysis. The main problem we faced was that while
the Twitter data were available for each day of the week, in-
cluding weekends, the stock values were absent for weekends
and other holidays when the market is closed. In order to
fill the missing values, we overcame this problem by using a
simple statistical function. If the value that is missing is y,
the previous known value is xprevious and the next known
value is xnext, then the value y will be:

y = (xprevious + xnext)/2.

This approximation works most of the time very well ex-
cept in cases of unexpected rapidly rise and fall.

Furthermore, we create two additional fundamental met-
rics:

HLPCT = High—Low

ow

Close—O
PCTchange = %
HLPCT stands for "High-Low Percentage” and PCTchange
for "Percentage change”. Both metrics are important for the
machine learning algorithm which we applied in order to find
the correlation between tweets and stock market.

Twitter Data Preprocessing

For the process of collecting tweets, Twitter provides two
possible ways to gather Tweets: the Streaming API or the
Search API. The Streaming API allows users to obtain real-
time access to tweets from an input query. The user first
requests a connection to a stream of tweets from the server.
Then, the server opens a streaming connection and tweets
are streamed in as they occur, to the user. However, there
are a few limitations of the Streaming API. First, language is
not specificable, resulting in a stream that contains Tweets
of all languages, including a few non-Latin based alphabets,
that complicates further analysis.

Because of these issues, we decided to go with the Twitter
Search API instead. The Search API is a REST API which
allows users to request specific queries of recent tweets. The
Search API allows filtering based on language, region, geolo-
cation and time. There is a rate limit associated with the
query, but we handle it in the code.

The request returns a list of JSON objects that contain
the tweets and their metadata. This includes a variety of
information, including username, time, location, retweets,
and more. For our purposes, we mainly focus on the time
and tweet text. We filter out the unnecessary metadata and
store both the tweet text and its timestamp in a .txt file.
We use as query the ticker of the company in front of which
we add the dollar sign to gather the most “financial” tweets.

Both of these APIs require the user have an API key for
authentication. Once authenticated, we were able to easily
access the API through a python library called “Tweepy”,
which is a wrapper for the Twitter API.

S. SENTIMENT ANALYSIS

Text Processing

The text of each tweet includes a lot of words that are
irrelevant to its sentiment. For example, some tweets con-
tain URLS, tags to other users, or symbols that have no
meaning. In order to better determine a tweet’s sentiment
score, before anything else we had to exclude the “noise”
that occurred because of these words. For this to happen,
we relied on a variety of techniques using the Natural Lan-
guage ToolKit (NLTK) for Python.

A. Tokenization

Firstly, we divided the text by spaces, thus forming a list
of individual words per tweet. We then used each word in
the tweet as features to train our classifier.

B. Removing Stopwords

Next, we removed stopwords from the list of words. Python’s

Natural Language ToolKit library contains a stopword dic-
tionary, which is a list of words that have neutral meaning

and are inappropriate for sentiment analysis. To remove the
stopwords from each text, we simply checked each word in
the list of words against the dictionary. If a word was in the
list, we excluded it from the tweet’s text. The list of stop-
words contains articles, some prepositions, and other words
that add no sentiment value (able, also, or, etc.)

C. Twitter Symbols

It is not uncommon that tweets may contain extra symbols
such as “@Q” or “#” as well as URLs. On Twitter, the word
following an “@” (mentions) symbol is always a username,
which we also exclude because it adds no value at all to the
text. Words following “#” (hashtags) are not filtered out be-
cause they may contain crucial information about the tweet’s
sentiment. They are also particularly useful for categoriza-
tion since Twitter creates new databases that are collections
of similar tweets, by using hashtags. URLs are filtered out
entirely, as they add no sentiment meaning to the text and
could also be spams.

Training Set Collection
To train a sentiment analyzer and obtain data, we were in
need of a system that could gather tweets. Therefore, we
first collected a large amount of tweets that would serve as
training data for our sentiment analyzer.

In the beginning, we considered manually tagging tweets
with a “positive” or “negative” label. Thus we created a
list of 1000 hand-classified tweets but because it was hard
and time-consuming, we decided to look for a database with
already sentiment-classified tweets. Surprisingly, we found
that our search for other tweet corpuses returned no results,
as Twitter had recently modified its terms of service to disal-
low public hosting of old tweets. Under these circumstances,
we turned to alternative methods in order to form a training
set. Specifically, we had two main ideas on how to classify
tweets as training data.

According to the first idea we created a “positive” and a
“negative” dataset for training, by using Twitter’s Search
API. Each dataset was created programmatically and was
based on positive and negative queries on emoticons and
keywords:

e Positive sentiment query: ™) :-) =) :D <3 like love”
e Negative sentiment query: ”:(=(hate dislike”

Any tweet that included one or more of these keywords
or emoticons was most likely to be of that corresponding
sentiment. This resulted in a training set of “positive” and
“negative” tweets which was almost as good as tagging tweets
by hand.

The second idea was that we could maybe utilize a senti-
ment lexicon in order to classify the gathered tweets. The
one we selected was the external lexicon AFINN[4], which
is a list of English words rated for valence with an integer
between minus five and plus five.

Training the classifiers

Once we had collected a large tweet corpus as training
data, we were able to construct and train a classifier. Within
this project we used two types of classifiers: Naive Bayes
Bernoulli and Support Vector Machine. We chose to focus
on these algorithms because according to [5], they are the
state of the art for Sentiment Analysis. For both classifiers,
we extracted the same features from the tweets to classify on.

A. Feature Extraction

A unigram is simply a N-gram of size one. For each unique
tokenized word in a tweet, a unigram feature is created for
the classifier. For example, if a negative tweet contains the
word “bad”, a feature for classification would be whether or
not a tweet contains the word “bad”. Since the feature came
from a negative tweet, the classifier would be more likely to
classify other tweets containing the word “bad” as negative.

Likewise, a bigram is a N-gram of size two and a trigram
is a N-gram of size three. That means that in the case of
bigrams the feature vector for the classifier is made of a
two-word combinations and in the case of trigrams is made
of a three-word combinations respectively. For example, if
a negative tweet contains the combination “not perfect”, in
the case of the bigram feature extraction it would be clas-
sified as a negative tweet. Instead, if only unigram features
were used, the tweet would have been classified as positive
since the term “not” has a neutral sentiment and the term
“perfect” a positive one.

B. Feature Filtering

With the method described above, the feature set grows
larger and larger as the dataset increases leading to the point
were it becomes difficult and unnecessary to use every sin-
gle unigram, bigram, and trigram as a feature to train our
classifier. So we decided to use only the n most significant
features for training. We used a chi-squared test, Pearson’s
chi-squared test in particular, to score each unigram, bi-
gram, and trigram in our training set. NLTK helped us
to determine the frequency of each feature. Having, now,
the features ordered by score, we selected the top-10000 to
use for training and classification. This method undeniably
speeded up our classifiers and reduced the amount of mem-
ory used.

‘Wordcloud

Having ordered the n most significant features we decided
to create a Wordcloud in order to watch the significant fea-
tures easily. Figure 2 shows an example of a Wordcloud for
Apple’s ticker “AAPL” on the 23rd of June 2016.

may billionmact

' S pyamp St(;C K.

t\Nt r https

time

T., room

read

qq9_
Figure 2: Wordcloud for stock “AAPL” (Apple).

6. MACHINE LEARNING TECHNIQUES

Accurate classification continues to be an engaging prob-
lem in machine learning and data mining. It is more than
often that we need to create a classifier with a set of train-
ing data and labels. In our case, we want to build a classi-
fier that is trained on our “positive” and “negative” labelled
tweet corpus.This way, the classifier will be able to label fu-
ture tweets as either "positive” or "negative”, according to
each tweet’s characteristics and features. In this project,
we examine two classifiers used for text classification: Naive
Bayes Bernoulli and Support Vector Machines (SVM).

In the following examples, y represents the class label,
which in our case is either "positive” or "negative”’, and x;
represents a feature in the feature set F'.

Naive Bayes Bernoulli

Naive Bayes methods are a set of supervised learning al-
gorithms based on applying Bayes’ theorem with the "naive”
assumption of independence between every pair of features.
Given a class variable y and a dependent feature vector x;
through z,,, Bayes’ theorem states the following relationship:

Py)P(z1,....xnly)

Py|lz1,...,xn) = I CIRTS

Using the naive independence assumption that
P(zily, @1, ..., Ti—1, Tit1, .., 7n) = P(xily)

for all i, this relationship is simplified to:

_ P ITis, P(=ily)

Py a1, an) = =5

Since P(z1,...,Zn) is constant given the input, we can use
the following classification rule:

o< P(y) [Ti=; P(z: | v)
I

§ = argmaxy P(y) [[}_, P(z; | y)

P(y|.’£1,...,]}n)

and we can use Maximum A Posteriori (MAP) estimation to
estimate P(y) and P(z; | y); the former is then the relative
frequency of class y in the training set. The different naive
Bayes classifiers differ mainly by the assumptions they make
regarding the distribution of P(z; | y).

In our case, we use Naive Bayes’ Bernoulli implementa-
tion which is distributed according to multivariate Bernoulli
distributions. The decision rule for Bernoulli naive Bayes is
based on

P(i|y)zi+ (1= P [y)(1 - i)

which differs from multinomial NB’s rule in that it explic-
itly penalizes the non-occurrence of a feature 7 that is an
indicator for class y.

The Naive Bayes Bernoulli classifier is extremely simple,
and its conditional independence assumptions are not real-
istic in the real world. However, applications of Naive Bayes
classifiers have performed well, better than initially imag-
ined.

Pzi|y) =

Support Vector Machine
Support vector machines (SVMs) are a set of supervised
learning methods used for classification, regression and out-
liers detection. Unlike the Naive Bayes classifier, the SVM
is a large margin classifier, rather than probabilistic. In pre-
vious works, SVMs have been shown to be very effective for

text categorization. The SVM is a classifier that attempts
to find a separation between a linearly separable set of data,
with as wide of a gap as possible between them, called a
margin. A SVM constructs a hyper-plane or set of hyper-
planes in a high or infinite dimensional space, which can be
used for classification, regression or other tasks. Intuitively,
a good separation is achieved by the hyper-plane that has
the largest distance to the nearest training data points of
any class (so-called functional margin), since in general the
larger the margin the lower the generalization error of the
classifier. With our training set as an input, the SVM finds
the hyperplane such that each point is correctly classified
and the hyperplane is maximally far from the closest points.
The name "support vector” comes from points on the margin
between the hyerplane and the nearest data points, which
are called support vectors. The SVM looks for a parameter
vector a that, again, maximizes the distance between the
hyperplane and every training point. In essence, it is an
optimization problem:

Minimize %a *a

yla*xxz; +0) >=1,

where y is the class label (—1,1) for negative and positive.

Once the SVM is built, classification of new tweets simply
involves determining which side of the hyperplane that they
fall on. In our case, there are only two classes, so there is
no need to go to a non-linear classifier.

Figure 3 displays the sentiment classification of all gath-
ered tweets, concerning seven of the most popular tech com-
panies, from 14/6 until 22/6 using the following formula to
normalize their positive sentiment score over the total num-
ber of tweets per day:

PositiveTweets;

NormalizedPositiveScore; = TotalTweels
i

— MSFT
- — TWTR
YHOO

16 156 1666 176 18/6 1%i6 2006 21/6 2216

Figure 3: Normalized Positive Score from 14/6 to 22/6

Classifier Evaluation

In order to accomplish our ultimate goal, which was to
utilize Twitter sentiment scores for predicting stock market’s
movements, we trained and tested each of our classifiers on
a particular subset of our tweet corpus. So as to calculate
accuracy, we used the k-fold cross validation method. In this
method, we train on all days upto a specific day and test for
the next k days. For the purpose of our analysis, we used
7-fold cross validation and found the average accuracy. k-
fold cross validation splits the training dataset into k smaller
datasets. One of these subsets is left out and used as a test
set to measure accuracy and the other k£ — 1 subsets (in our
case 6), are used to train the classifier. This procedure is
repeated k times, every time for a different data partition.

Firstly, we measure accuracy and secondly, precision and
recall values for each of the labels, "positive”, "negative” and
“neutral”. Precision is measured as the number of true pos-

itive tweets over all positive tweets:

. . _ tp
Precision = i

where "tp” stands for true positive tweets and ”fp” for false

positive tweets. On the other hand, Recall is the true posi-
tive rate of the classifier and it’s calculated as follows:

_ _tp
Recall = i

where "fn” stands for false negative tweets.

Machine Learning Evaluation metrics
Algorithm Naive Bayes SVM
Accuracy 0.80609 0.79308
Precision pos: 0.8 pos: 0.7727

neg: 0.62 neg: 0.4545
neut: 0.8421 neut: 0.8125
Recall pos: 0.6 pos: 0.5666
neg: 0.9473 neg: 0.8333
neut: 0.7441 neut: 0.8666
F-measure pos: 0.6857 pos: 0.6538
neg: 0.75 neg: 0.5882
neut: 0.79 neut: 0.8387

Table 1: Average effectiveness of machine learning
techniques for sentiment classification.

7. STOCK MARKET PREDICTION

After training our classifier, we decided that an interest-
ing application would be to look at the correlation between
tweet sentiment and stock market prices. We focused on the
top-16 technology stocks according to Yahoo! Finance. Af-
ter we completed the Data Preprocessing, both in Twitter
data and in stock data, as described in Section 4, we created
a feature matrix which contains the following features:

- percentage positive sentiment score
- percentage negative sentiment score
- percentage neutral sentiment score
- close price

- HLPCT

- PCTchange

- volume

Then we applied SVM in order to achieve a prediction
about future stock movements. Afterwards, we compared
our results with the upcoming stock changes. Conclusively,
we achieved an average accuracy of 87% concerning correct
stock’s movement prediction.

In terms of the predicted closing price we accomplish pre-
diction errors under 10%. The figure below shows our pre-
diction results on 23/6 for the 16 most popular technology
stocks according to Yahoo! Finance.

Close Price vs Predicted Close Price on 23/6
800,00

600,00

W CLOSE
M PREDICTED CLOSE

400,00

200,00

MOST POPULAR TECH TICKERS

Figure 4: Close Price vs Predicted Close Price on 23/6

In the extra figure below it is clarified that the largest
error is 6.29% in the case of "Blackberry” (BBRY) and that
nine out sixteen errors are below 1%. The average prediction
error is 1.668%.

Prediction Errors for 23/6
7%

5,25%

1,75% average error
1,668%

0%
AAPL AMZN BBRY CSCO EA FB GOOG IBM INTC LKND MSFT NFLX ORCL TWTR VZ YHOO

Figure 5: Prediction Errors for 23/6

8. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated whether public sentiment,
as measured from tweets, is correlated or even predictive of
stock values and specifically for 16 of the most popular tech
companies according to Yahoo! Finance. Our results show
that changes in the public sentiment can affect the stock
market. That means that we can indeed predict the stock
market with high chances.

Furthermore, it is worth mentioning that our analysis does
not take into consideration many factors. First of all, our
dataset does not really extract the real public sentiment,
it only considers the twitter using, english speaking people.
Secondly, the bigger the dataset is, the better the prediction
but at the same time the problem gets more complicated.

There are many areas in which this work could be ex-
panded in the future. With a longer period of time and
more resources, there is much potential in the field. If it is
possible, we would want to collect data over the course of a
few years, both from Twitter and the stock market. In ad-
dition we could investigate intraday stock changes in order
to make our prediction more accurate. Finally, in the future
we could create a stock lexicon based on the most common
words used.

9. REFERENCES

[1] W. Antweiler and M. Frank. Do US stock markets
typically overreact to corporate news stories? Working
Paper, (1998):1-22, 2006.

AAPL AMZN BBRY CSCO EA FB GOOG [BM INTC LKND MSFT NFLX ORCL TWTR VZ YHOQ

[2] J. Bollen and H. Mao. Twitter mood as a stock market
predictor. Computer, 44(10):91-94, 2011.

[3] a. Mittal and a. Goel. Stock Prediction Using Twitter
Sentiment Analysis. Tomz.Inf. Elte. Hu, (June), 2012.

[4] F. A. Nielsen. A new ANEW: evaluation of a word list
for sentiment analysis in microblogs. In M. Rowe,

M. Stankovic, A.-S. Dadzie, and M. Hardey, editors,
Proceedings of the ESWC2011 Workshop on ’Making
Sense of Microposts’: Big things come in small
packages, volume 718 of CEUR Workshop Proceedings,
pages 93-98, May 2011.

[5] A. Pak and P. Paroubek. Twitter as a Corpus for
Sentiment Analysis and Opinion Mining. Lrec, pages
1320-1326, 2010.

[6] T. O. Sprenger, A. Tumasjan, P. G. Sandner, and I. M.
Welpe. Tweets and trades: The information content of
stock microblogs. European Financial Management,
20(5):926-957, 2014.

[7] P. D. Wysocki. Cheap talk on the web The
determinants of postings on stock message boards.
1998.

