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Abstract

The filtering task has traditionally been defined as a special case of the information retrieval task, and
undeniably, it can be performed by applying retrieval techniques. This theoretical study summarizes
our experiences in viewing filtering as an adaptive and temporally-dependent process. A process that,
in contrast to traditional retrieval, takes into account the dynamic nature of relevance and its temporal
aspects. We investigate the nature of user interests, formulate useful types of adaptivity, and discuss
the effectiveness of those types in relation to user interests. To deal with drifts, we introduce the
notion of the half life of documents. Furthermore, we discuss potential dangers for effectiveness such as
selectivity traps. We pay special attention to practical efficiency issues by discussing term selection and
incrementality.

1 Introduction

The digital and networking revolution over the last decade has made large amounts of digital information
available. This tremendous increase in digital information has led to a new challenge in information seeking.
Currently, users everyday find themselves confronted with large amounts of information in the form of news,
e-mail messages, and especially World-Wide Web pages. Although users have access to a rich body of
information, only a small fraction of this is actually relevant to the interests of any particular user.

Information retrieval, and especially text retrieval, is an information seeking process with an extensive
research heritage. Given the shared similarities between many information seeking processes, the filtering
task has been seen as a special retrieval case, treated by retrieval techniques. In some cases, the filtering and
retrieval tasks have even been seen as “two sides of the same coin” [1]. We do not question the similarity of
the tasks; the filtering task can indeed be performed with slightly modified retrieval techniques. However, we
point out a few important differences in the nature of data involved. Taking these differences into account
is beneficial for effectiveness.

This article is influenced by the work of several researchers. We have found especially useful the conceptual
framework for filtering described in [2], and the adaptivity issues discussed in [3]. We additionally refresh
and revise the most important parts of the work described in [4] and [5]. In the following Sections, document
filtering systems are addressed by:

e classifying user interests with respect to how the idea of relevance changes over time (Section 3). As
we will see, relevance may be disturbed by user-triggered and world-triggered factors.
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e classifying user interests with respect to the occurrence patterns of relevant documents in time (Sec-
tion 4). We introduce a measure which enables the temporal classification of interests. Moreover, we
outline how such information may be used in filtering.

e classifying forms of adaptivity (Section 5).
e discussing implementation issues, such as incrementality (Section 6).

e discussing the performance of different forms of adaptivity on different kinds of user interests (Sec-
tion 7).

e discussing term selection for adaptive filtering tasks (Section 8).
e discussing potential dangers for effectiveness, such as selectivity traps (Section 9).

This study is the result of the bottom-up approach we have followed to deal with filtering in the last years.
Guided by the experiments we have performed — in the context of the TREC-9 adaptive filtering tasks and
elsewhere — we will try to formulate what we believe lies on the top and is important for effectiveness. For
completeness, we will start from the definition of the filtering task.

2 Document Filtering

Document filtering is an information seeking process that searches through a dynamically generated docu-
ment collection, e.g. a stream of arriving documents, for documents which match a user interest. The user
interest is assumed to be long-term, in contrast to one-time queries in retrieval, and we will call it a topic.
Filtering may also be seen as a binary classification/categorization task where each new document has to be
classified under one of two categories: relevant, or non-relevant.

Document filtering, and similarly other information seeking processes, can be broken down into three
sequentially-performed sub-tasks or modules: collection, selection, and display of documents. The overall
picture is depicted in Figure 1.
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Figure 1: Sub-tasks of a filtering process.

Collection is concerned with providing a document stream. Two ways of collecting documents may be
distinguished: passively collected e.g. from a newswire [6], or pro-actively collected e.g. with autonomous
intelligent agents going out to find new documents in the World-Wide Web [7]. The combination of both
actively and passively collected documents in one stream is also possible. The display module is responsible
for the interaction between users and the system. It does not only display the selected documents, but it
interacts with users and accounts for their reactions on the presented output to guide the collection and
selection processes. In this study, we focus our attention on the selection module. The collection and display
tasks are already rich research areas in their own right, and will be considered here as black-boxes, where
the former provides a document stream and the latter provides relevance judgments for some of the selected
documents.

The selection module does the actual filtering of the collected documents, selecting the relevant or re-
jecting the irrelevant ones, with respect to a topic. It uses some internal representation for documents and
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topics, called profiles. Representation allows, by means of a filtering function, the calculation of the about-
ness of each document with respect to a topic, so as to decide whether to select or reject it. Two sources of
deducing representations have been dominating the research in filtering, distinguishing two types of filtering:
collaborative (or social), and content-based (or cognitive) [6, 8].

In collaborative filtering, documents are represented by annotations made by their prior readers. By
exchanging these annotations, groups of users with shared interests can automatically be identified. Collab-
orative filtering can provide a basis for selection of documents regardless of whether or not their content is
represented. Content-based filtering assumes that each user operates independently. There is no exchange of
information of any kind, thus document representations can only be derived from their content. Of course,
both approaches may be combined in a way that annotations and content both contribute to estimate the
aboutness. In this study, we are concerned with content-based filtering.

Filtering systems can exploit the long-term nature of topics to improve the filtering model over time.
A system may continuously monitor the stream accumulating different kinds of statistical data, and using
them to produce better representations for profiles. Moreover, as documents are filtered for a topic, the user
may give relevance judgments for some of the selected documents. Judged documents can be used to adapt
the topic profile and the filtering function. The choice between exploiting the long-term nature of topics or
not, distinguishes between two types of systems. Systems that do not change the way they filter over time
are called batch® or non-adaptive. One-pass filtering systems that alter their filtering model in response
to the history are called adaptive. In TREC-9, adaptivity has been proven important: the effectiveness of
adaptive runs (initiated only with very little relevance information) has been comparable to this of batch
runs (initiated with full training sets).

3 A Relevance Classification of Topics

A filtering task begins with a user interest and a stream of documents. With respect to a stream of N
documents, and assuming binary relevance, we will define as topic T the substream of all documents relevant
to the user’s interest, e.g., T' = D1,...,D,, n < N. This definition of topic quantifies the user interest in
terms of the document stream. We will assume that the topic is persisting in the stream, that is, as the
stream grows (N — oo) the topic grows as well (n — c0).

Adopting this point of view, only 2V different topics may be distinguished for a certain N, however, an
infinite number of interests may be thought of. When two or more different interests translate to the same
substream of relevant documents, we will not distinguish between those interests; the idea is that you cannot
get anything more than what is actually present in the stream.

Let us assume an abstract distance measure d(D;, D;) € [0,+00) between any two documents D;, D;.
Small distance values mean that two documents are about similar subjects. We will also introduce a fuzziness
parameter € which denotes the maximum distance allowed for two documents to be considered as being about
the same subject.

A topic T' may be classified with respect to the values of the distance d(D;, D;), for all relevant documents
D;,D;, as n — oo:

e stable: All distances between the documents are less than or equal to e:

‘v’z,g : d(D,,DJ) S g .

e drifting: All distances between consecutive documents are less than or equal to £, but some distances
of non-consecutive documents are not:

Vi : d(Dz’,DH_l) <e and H’L',j : d(Di,D]’) >e€.

! Adhering to the TREC convention.
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e multimodal: There are consecutive document distances greater than e, but the topic can be broken
down to a finite number of k stable disjoint subtopics:

3 stable Ty,..., T : T = @&;T; and VD,'ETl,D]‘ETm,l#mZ d(D,’,Dj)>E,

where @ means that T;’s are exclusive partitions of T: they have no documents in common but their
union amounts to 7'.

e vagrant: the same as multimodal, but the number % of subtopics is infinite.
e white noise: the same as vagrant, but £ — oo faster than for vagrant topics.

This classification is rough, but sufficient for our analysis. A topic may exhibit in reality a more complex
behaviour in time by switching between two or more of the above types. For example, a topic is at first
stable, but then starts drifting; or even a subtopic 7; of a vagrant topic is drifting.

Note that the fuzziness parameter € determines the limits of the classes: a very large fuzziness will classify
all topics as stable, while an infinitesimal one will classify everything as white noise. However, for a given
reasonable fuzziness, what classifies a topic under one of the above categories depends on user-triggered and
world-triggered factors.

User-triggered factors are related to whether a user interest shifts in time, and how it shifts. World-
triggered factors are independent of shifts in user’s interest. They are directly related to the nature of the
interest with respect to the real world. The world may produce considerably different but still relevant
documents.

3.1 User-triggered Shifts in Interest

A user who sticks to her initial request has a stable interest. However, the user interest can also deviate over
time. For instance, as the user reads more and more documents about the initial request, she wants to know
more specific or general information, or slowly becomes interested in a similar subject which is referred to in
the documents already retrieved. In this case, the user has an drifting interest. [9] has demonstrated that
such drifts can be handled readily by phasing out old context.

A multimodal or vagrant interest usually arises when the user does not exactly know what she is looking
for, consequently the interest is vaguely formulated. She will probably find different kinds of documents
relevant, in the search of her real interest. The interest may switch between closely related — specific or
relatively random — domains.

We will assume here a rational user who does not abruptly change her mind. An abrupt shift should be
considered as a different interest and be treated as a new filtering process. Thus, white noise behaviour can
not arise for user interests in filtering; it rather corresponds to user interests in traditional retrieval tasks.

3.2 World-triggered Shifts in Document Content

Consider filtering an interest about HIV treatments. Over the years, treatments have changed; new and
more effective ones have been slowly developed, while the less effective ones have been fading out. In such
cases, where the contents of relevant documents slowly change in time, there is content drift.

Document contents can show multimodal or vagrant characteristics. Multimodality arises when the
interest is such that it combines two or more stable but relatively distant interests, for example, operating
systems AND computer architecture. The contents of relevant documents will switch between the two
different subjects at irregular intervals.

A special kind of vagrancy arises in what we call event-driven interests. As example consider the interest
terrorism. Such an interest is driven by real world events which can be relatively different and unexpected,
for example, NYC subway bombing or flight TR-304 hijacking. An important event is usually associated
with bursts of relevant documents for some period of time. Then, documents about the subject tend to
disappear completely from a news stream, while some other (relatively random) terrorist event may happen.
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3.3 Relevance

User interest shifts and document content shifts are related in the sense that the idea of relevance changes.
Whether a shift comes from the user or the world side is not of importance. What is important is that future
relevant documents will be different than the ones of the past. Consequently, we will talk about relevance
shifts, irrespective of who or what causes them.

The user and the world can both be viewed as sources of introducing disturbances in relevance. In this
respect, the source with the highest entropy defines the class of the topic. For example, a stable user interest
but vagrant contents in relevant documents results in a vagrant topic.

RSN \

o--® ®
1\

. ! )\’/\\/' \ Y
\j\\'\:‘ .\‘.
@ [ ]
Stable Drifting Multimodal Vagrant White Noise

Figure 2: A relevance classification of topics.

In summary, an interest is what a user has in mind. An interest may be satisfied by a number of (finite
or infinite) subjects. A document contains a few subjects. The same subject may spread across documents.
A topic is the substream of all documents containing subjects that satisfy the interest at the time of their
arrival. With respect to how relevance changes, i.e., how the contents of relevant documents change in time,
topics may be classified as shown in Figure 2. The Figure shows possible trajectories of relevance in the
document space.

The classification of topics we have just considered is related to the types of adaptivity we will introduce
in Section 5. In Section 7 we will discuss this relationship. First we will attempt another classification of
topics.

4 A Temporal Classification of Topics
The classification of topics considered in the previous Section is purely based on relevance aspects. We have

considered how relevance changes in the ordered set (stream) of a topic’s relevant documents. In this Section,
we consider the actual times of arrival of relevant documents.

The qualitative classification we consider has the following classes:
e simply periodic: Single relevant documents arrive at approximately constant time intervals.
e random or uniform: Relevant documents arrive at irregular intervals.
e periodically clustered: Some relevant documents arrive at regular time intervals.
e aperiodically clustered: Bursts of relevant documents arrive at irregular time intervals.
Figure 3 depicts the above occurrence patterns. This classification of topics is rather orthogonal to the

relevance classification considered in Section 3.

Next we will see how uniformity may be quantified. The measure we will introduce enables the tem-
poral classification of topics as discussed above. Then we will briefly discuss the implications that such a
classification has for filtering effectiveness.
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Figure 3: A temporal classification of topics.

4.1 A Measure for Uniformity

Let us consider a normalized time-line [0, 1], where the initiation of a filtering task is located at 0 and the
present time is at 1. Each document occurrence can now be represented by a point in that interval, and
the occurrence pattern of a topic of length n by a list of points z1,...,2,. Measures of (non)uniformity
of point-lists are called discrepancies. Such measures have the structure of statistics to measure the overall
difference between an estimated probability distribution and a conjectured probability distribution.

A list of n occurrence points can be converted to an unbiased estimator S, (z) of the cumulative distribu-
tion function of the probability distribution function from which it was drawn: S,,(z) is the function giving
the fraction of occurrences to the left of . The cumulative distribution function of the uniform distribution
is Py(z) = z. Different lists of points have different cumulative distribution function estimates. However,
all cumulative distributions agree for z = 0 and z = 1 where they are zero and one respectively. As a con-
sequence, it is the behaviour between 0 and 1 of their cumulative distribution functions that distinguishes
distributions.

There are many statistics to measure the overall difference between two cumulative distributions. We
have chosen a variant of the generally accepted Kolmogorov-Smirnov (K-S) test, namely Kuipers’ statistic
[10], which is the sum of the maximum distances of S,,(z) above and below Py (z):

Vo=Di+D_= Orélmaicl[Sn(a;) — Py(z)] + Orgficl[PU(w) = Sn(z)] . (1)

The method is demonstrated in Figure 4a.

This statistic guarantees equal sensitivities at all values of z, in contrast to the original K-S test which
tends to be more sensitive around the median value where Py(z) = 0.5 and less sensitive where Py(z) is
near 0 or 1. It is also invariant under re-parameterizations of x and shifts on the circle created by gluing
points zero and one of the time-line. K-S-like statistics have a computational complexity linear to n. More
details on how to compute them can be found in [11].

V, takes values in [%, 1]. Figure 4b shows the empirical probability densities of V19 and Vig for 20.000
pseudo-random occurrence patterns. Values close to 1/n are obtained for simply periodic occurrences. Truly
random patterns get slightly larger values; how much larger is determined by the number of occurrences n.
Values of V,, close to 1 correspond to serious clustering of the occurrences in the timeline.

Using Kuiper’s statistic, topics may be quantitatively classified into the classes defined at the beginning
of this Section. We simply split the range of values [%, 1] of V,, into four intervals. These intervals are
determined by three cut-values z1, z3, and z3. For a certain n, we define z; and z» through the Equations

P(Vp,<zi)=p and P(V, >z)=p, (2)
for some small p, e.g., p = 1%. For a certain p, z; and z» may be obtained from standard tables with the

confidence levels of the statistic, e.g., from [12]. Moreover, we define z3 as some number between z» and 1;
its exact value is a rather subjective matter and it should be justified empirically.
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Figure 4: Kuipers’ discrepancy test V,,.

4.2 Using Temporal Information

We will outline how information about the occurrence pattern of a topic in time may be used for filtering.
Let us consider again a stream of N documents and a topic 7T of length n. The density of relevant documents
in the stream for T is

P=TN- 3)

If the topic occurs randomly in the stream, then p may be interpreted as the probability that the next
arriving document will be relevant. However, high topic uniformity is not the case in general. Periodic
and clustering characteristics introduce uncertainty into the interpretation of density as probability. The
uncertainty decreases with the topic uniformity.

Vi, p, and periodicity information may provide means for filtering irrespective of document content. p
can be seen as the ezpected value of the a priori probability of relevance P(rel), i.e., E(P(rel)) = p. The
variance of the distribution of P(rel) in time is some increasing function f, of V,,, i.e., V(P(rel)) = fr(Vy).
Periodicity information may give an estimate of P(rel) that corresponds to a certain time-point ¢:

P(rel|t) = E(P(rel)) + g(V(P(rel)), ) , (4)

where g is some function that accounts for periodicity and/or temporal clustering.

In principle, one could blindly retrieve documents by sampling the document stream with probability
P(rel|t). P(rel|¢t) is usually small, since it depends on p which is small because there are usually many more
relevant than non-relevant documents in a stream. However, depending on the temporal nature of the topic,
P(rel|t) may peak at usable values. In any case, P(rel|t) may be seen as additional evidence that together
with P(rel|D) (the probability of relevance estimate based on document content) contributes to the decision
of whether to select a document or not.

What we have just described is rather crude, and we do not claim that this is the best way to deal
with the temporal aspects of filtering. Summarizing the problem, the questions are: How can P(rel|t) be
estimated for the history? How can one extrapolate P(rel|t) for the future? What is the appropriate way
to combine the two pieces of evidence P(rel|t) and P(rel|D)? In fact, the tools are already there; here are a
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few keywords: Fourier analysis, time-series analysis, or more contemporary and geometrically, phase space
reconstruction and Poincaré sections.

5 A Temporal Classification of Adaptivity

Disregarding the actual techniques used for creating or altering a filtering model, filtering systems may be
classified according to the temporal location from which they obtain the information for doing that. To reach
such a classification we will follow an approach similar to the one in [3].

Let us consider a system that is initiated at time 0 and the current time is ¢; thus the system has a
history of length ¢. The importance of an event that happened at time z within this history can be modeled
by a history weight function H(xz,t) with the following property:

t
/H(a:,t)dx:l, Vt>0, (5)
0

that is, the area below the H(z,t) curve amounts always to 1 for all ¢. For instance, a history weight function
that weighs equally all history is:

H(z,t)=1/t. (6)

Irrespective of its form, the H(z,t) curve is characterized by its mean value, which is mathematically
defined as:

H(t) = /OtH(:v,t)xd:v . (7)

It will be useful for this analysis to define the distances a(t) and b(¢) of this mean from the beginning and
the end of the history respectively:

a(t)=H(t), bt)=t—H(t). (8)

Figure 5 visualizes all the above so far.

F— history —ﬁ

wed
('/ time

e a) ———=~——b) —]
0

H(t) t = now

Figure 5: Example of a history weight function.

Adaptive systems may be classified according to the behaviour of H(t) as the history grows, that is
t — oo. We distinguish between the following classes of adaptivity:

e non-adaptive:

e locally adaptive:
a(t) > 00, bt)<ec,

where b(t) < ¢ means that b(t) is bounded by a constant ¢ as ¢ — co.
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e asymptotically adaptive:
a(t) > 00, b(t) > 0.

Non-adaptive systems do not use the history whatsoever. Asymptotically adaptive systems spread the
emphasis over the whole time-line in such a way that the mean H in not bounded. An example of an
asymptotically adaptive system is a system which weighs all events of the past equally, like one with a
history weight function of Equation 6.

Locally adaptive systems rely most heavily on data collected in the recent past, degrading the value of
the early past as the history grows. A minimum amount of emphasis is always given to a bounded length of
the recent history, and the rest of the emphasis is spread over the rest of the history. A special case of local
adaptivity shows up in windowed locally adaptive systems which consider only the recent history within a
fixed time window. A typical history weight function of this form is:

(YW, Ht-W<az<t.
H(””’t)_{o, if 0<z<t-W. 9)

where W is the window size.

In Section 7, we will discuss the effectiveness of the aforementioned types of adaptivity in relation to
the nature of user interests. First, turning the theory into practice, we will discuss some practical issues in
implementing adaptivity.

6 Adaptivity and Incrementality

Our discussion so far has assumed that the whole history and an unlimited amount of memory and compu-
tational power are available at any point in time. However, practical models in order to be feasible should
satisfy the following requirements:

e use a fixed finite amount of memory.
e process the available history in a fixed finite number of computations.

These requirements imply that only a finite portion of the history should be retained, and that models should
be implemented incrementally.

Let us assume a filtering model that records frequencies of certain features occurring in relevant docu-
ments, in order to make predictions of relevance in the future. Incremental asymptotic adaptivity in such a
simple model can be achieved by accumulating the values of the occurring features in an array of registers;
one register per feature. Of course, there is another minor concession we make here, that is to allow registers
of infinite width. Double precision arithmetic approximates this assumption well; in any case, all accumula-
tors can be divided by a constant, whenever a value approaches the maximum width of the registers, without
invalidating the model.

A locally adaptive system may be implemented in a similar manner by additionally maintaining a doc-
ument buffer of some length W. Every time a new document arrives, registers accumulate the values of
the occurring features, but they are also decremented by the values of features which occurred in the oldest
document in the buffer. This approach is incremental, but it has two disadvantages: it uses more memory
because of the document buffer, and it discards all information beyond what is in the buffer at any time.

An alternative approach, which uses all information but weighs it appropriately, is to perform a decay
operation. We define the half life h of a document as the age that a document must be before it is half as
influential as a fresh one. If a document D; has arrived at time ¢; and the current time is t,,, the history
weight of the document is:

l; = exp (hl%(tn - ti)) , (10)

where t,,, t;, and h are expressed in the same units, e.g., months. Figure 6 demonstrates the decay operation.
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history weight
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I i time
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Figure 6: Decay and half life.

The decay operation can be performed incrementally, and it does not require any document buffers. It
is easy to show that when D,, arrives, all accumulators have only to be multiplied by [,,_; before the new
values of the features occurring in D,, are added.

7 A Comparison of Adaptivity

Non-adaptive systems will perform poorly, unless the initial topic representation is complete and precise and
the topic is stable. However, the initial representation is bound to be incomplete and imprecise, due to two
factors:

e the incapability of users to verbalize their precise interest,
e the weaknesses of the representation scheme itself.

Consequently, locally and asymptotically adaptive systems present more interesting features.

Locally adaptive systems use more recent information and they are capable of responding to relevance
shifts quickly. Therefore, they can track a drifting topic. However, the disadvantage of them is that they
will never converge to a stable topic. Asymptotically adaptive systems have the ability to converge to a
stable topic. The choice between a locally or asymptotically adaptive system should be made on whether
responsiveness or convergence is more important.

Implicit in the idea of tracking a topic using the history is that the history gives an indication of where the
topic may currently be located. A fundamental trade-off exists in tracking topics. While it is advantageous to
use as many instances of the history as possible to estimate accurately a topic’s position, it is disadvantageous
to use outdated instances. Relevant instances of the far past indicate the position of the topic at the time
they occurred and they do not reflect the topic’s current position. Thus they are less informative than
recently occurred instances. A practical solution to this problem is to estimate the speed of a drifting topic
and use this estimation to choose an appropriate window size W or half life h.

In the TREC-9 filtering task, the user requests were given as being stable, suggesting that an asymptotic
behaviour would be more proper. However, the test stream (OHSUMED) consists of documents collected
in a period of five years and it is likely that there are document content drifts. As an example, think of
new treatments developed for the same sickness. Indeed, our experiments have shown that the average
effectiveness (as this is measured by T9U) peaks for a half life value of around 4 years [5]. Analysis per topic,
however, has revealed that effectiveness is optimal at a considerably different half life value per topic.
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As a first step in optimizing h per topic, we define the effective relevance velocity v of a topic as:

v:%, vel0¢ . (11)
Note that the definition considers only the initial and the last position of relevance, and discards the trajectory
in between. Moreover, the velocity is defined with respect to the number of steps taken, rather than the
actual time. Obviously, h and v are related in an inverse way, however, their more precise relation should
be established experimentally.

The types of adaptivity we have defined are capable of dealing with stable and drifting topics. The
question of how multimodal or vagrant topics should be treated still remains. A solution would be to model
their subtopics separately. In the multimodal case, all subtopics may be assumed stable and be dealt with
by asymptotic adaptivity. However, it may be more effective for the vagrant case to assume that subtopics
are drifting. We should remind the reader that the poles (the gray circles in Figure 2) of a vagrant topic
may not be revisited by relevance in the future. Thus, a locally adaptive system would eliminate such old
outdated context. Next, we will discuss an alternative way of dealing with multimodality and vagrancy.

8 Stabilizing Multimodality or Vagrancy

The solution of modeling subtopics separately is not practical, although it may be effective. A more practical
solution is to, first, re-construct the document space so as to bring the different poles as close together as
possible, and then assume a larger fuzziness parameter so that the topic may be considered as stable or
drifting. The idea of re-constructing the document space is widely known as feature selection. It is depicted
in Figure 7.

unwanted unwanted

stable
Figure 7: Stabilizing multimodality or vagrancy by re-constructing the document space.

The first transformation shows how poles may be brought together by eliminating a dimension (feature).
The second transformation shows how unwanted areas of the document space may be moved away from
the topic area by adding a dimension (a different dimension than the one eliminated before). By selecting
an optimal set of features in this way and by increasing the fuzziness constant (e.g. to &') if necessary,
multimodal or vagrant topics may be treated as stable.

Traditional feature selection schemes usually favour features which occur frequently in relevant documents
but infrequently in the rest. In order to eliminate multimodalities or vagrancies, however, it is also important
that a feature occurs across poles; these features bring the poles together. High frequency in relevant
documents implies that a feature may also occur across poles, but not necessarily.

The uniformity measure we have introduced in Section 4.1 may be recruited once more. Based on the
hypothesis that features which occur uniformly in time are more valuable than others, we have introduced in
[4] a novel feature selection method, namely the term occurrence uniformity (TOU). A small experiment has
neither proved nor disproved the hypothesis. The results, however, have been promising, since the method
seemed as effective as other powerful term selection methods such as document frequency thresholding?.

2Document frequency thresholding has proven to be more than just an ad hoc approach for feature selection, and quite
powerful in text categorization environments [13].

BCS-IRSG European Colloquium on IR Research (ECIR01), April 4-6, 2001, Darmstadt, Germany. 11



Document Filtering as an Adaptive and Temporally-dependent Process

The approach taken has been a brute-force one; candidate features were ranked simply according to their
uniformity. A wise integration of a TOU method and some other powerful time-disregarding term selection
method may combine the benefits of both approaches.

A fundamental difference between adaptive filtering and classification (non-adaptive) systems is that
in filtering the document space may be reconstructed several times in order to optimize effectiveness and
efficiency. On-the-fly feature selection schemes should be applied with respect to possible relevance shifts.
Moderate cutoffs will be more appropriate. Due to the fixed-memory model required for practical systems,
every time a cutoff is applied, some low-frequency features will be irretrievably lost. Relevance drifts are
associated with frequency increments of previously low-frequency features. Therefore, applying repeatedly
aggressive cutoffs will not allow for the tracking of relevance drifts.

9 Selectivity Traps

The output of traditional retrieval systems is usually a ranked list of documents in their decreasing scores
(given by the probability of relevance or some other similarity measure) with respect to a query. In binary
classification tasks, like document filtering, a decision should be made for every document as to whether
it belongs to a given class or not. Thus, decisions such as where to “cut” a ranked list have to be made
automatically. In some cases, decisions are required to be made as soon as a document arrives, therefore
ranked lists are not even possible.

These considerations suggest the thresholding of document scores. We will not expand on thresholding
here; in [14], we have elaborated on the score-distributional threshold optimization method. Thresholding
has proven to be critical for classification effectiveness and has revealed the twin danger — unique to such
environments — of selectivity traps: setting a threshold too high retrieves nothing at all, while setting it
too low retrieves far too many documents [15]. We will call these traps overselectivity and underselectivity,
respectively.

Bad thresholding, however, is not the only cause of falling into selectivity traps. Another cause may be
training. Usually, a system is trained on its history, i.e. it is trained to do past tasks, and then it is applied
to future tasks. Consequently, the success of training depends on whether the lessons learnt from the past
apply to the future. The most obvious reason why this might not hold is that a topic is drifting faster than
a system is capable of tracking. We will call this trap intractability.

Another danger of training is what is widely known as overfitting a topic profile on history data. For
example, putting too much effort into finding the perfect profile for the history may discover and emphasize
accidental characteristics (e.g. typographical errors in relevant documents) that do not generalize into the fu-
ture. Overfitting usually manifests itself as overselectivity. At the other end of the spectrum lies underfitting,
which leads to underselectivity. Available training data may not be sufficient for training, subsequently the
topic profile is far from convergence describing a bit too much of the document space. Table 9 summarizes
the possible traps, their causes, and their criticalities for adaptive filtering.

underselectivity overselectivity intractability

causes — underfitting — overfitting — too fast drift
— too low threshold — too high threshold

criticality || not too dangerous | dangerous but recoverable | unrecoverable

Table 1: Selectivity traps.

In adaptive filtering, overselectivity is a more dangerous trap than underselectivity. Adaptivity in filtering
counts on the system to keep retrieving documents so it can continuously refine the filtering model. In this
respect, adaptivity can pull the system out of an underselectivity trap by improving the topic profile and
increasing the threshold. On the other hand, if at some point in time the system is led to an overselectivity
trap, it will not retrieve any documents on which it can refine the topic profile and threshold, which leads
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to “silent” profiles. However, such a situation may be recoverable by the use of special mechanisms; the
questions are how one can detect and fix an overfitted topic profile, and how can one be sure that the
threshold is too high (as opposed to there just being no relevant documents to be retrieved).

In the long term, the intractability trap has essentially the same effect as overselectivity. Even if a
profile still retrieves non-relevant documents when it has lost the relevant document area, these non-relevant
documents only give an indication of the area that the estimation of relevance should move away from,
without specifying an alternative direction. The profile will eventually fall “silent”, because of adaptivity
responding by increasing the threshold. We prefer, however, to view intractability as a separate trap from
overselectivity, since its cause is different and the situation is rather hopeless and unrecoverable.

One should keep in mind that adaptive filtering is an especially sensitive task. What makes it so sensitive
is that the system is provided with absolutely no relevance feedback for non-retrieved documents. Any
relevance statistics collected in this way are bound to be partial in the sense that they do not represent
a sample of the whole document space, but a sample of the retrieved space, therefore they may be highly
misleading. Compare this situation to other adaptive tasks such as adaptive data compression, where the
current frequencies of all symbols in a channel are known.

10 Outlook

This theoretical study summarizes our experiences in viewing filtering as an adaptive and temporally-
dependent process. All models and ideas we have described are the result of our experimental work in
the context of the TREC-9 filtering task [5], [4], and of previously unpublished empirical investigations, and
they result in a coherent view on relevance feedback environments involving temporally dependent data.

We have presented a collection of ideas: a definition of the filtering task, a definition of the topic,
two orthogonal classifications of topics (one based on relevance and the other on temporal aspects), a
classification of adaptivity, and ways of using temporal information for selecting documents and for feature
selection. Moreover, we have discussed potential dangers such as selectivity traps, and paid attention to
practical issues such as incrementality. Our analysis has been rough, and we rather pose more questions
than provide answers.

The classical view of the filtering task as a special case of the traditional information retrieval task, we
believe, is not appropriate. In the last few years, there has been increasing evidence that viewing filtering as
an adaptive and temporally-dependent task is beneficial for effectiveness. We are convinced that Information
Retrieval in general could benefit by taking into account the effect of adaptation and time. Our work so far
is fully described in [16] and it has concentrated in working out these issues.
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