
Multi-Dimensional Scattered Ranking Methods for
Geographic Information Retrieval*

MARC VAN KREVELD, IRIS REINBACHER, AVI ARAMPATZIS AND ROELOF VAN ZWOL

Institute of Information and Computing Sciences, Utrecht University, The Netherlands

E-mail: {marc, iris, avgerino, roelof }@cs.uu.nl

Received July 21, 2004; Revised November 15, 2004; Accepted November 15, 2004

Abstract

Geographic Information Retrieval is concerned with retrieving documents in response to a spatially related

query. This paper addresses the ranking of documents by both textual and spatial relevance. To this end, we

introduce multi-dimensional scattered ranking, where textually and spatially similar documents are ranked

spread in the list, instead of consecutively. The effect of this is that documents close together in the ranked list

have less redundant information. We present various ranking methods of this type, efficient algorithms to

implement them, and experiments to show the outcome of the methods.

Keywords: geographic information retrieval, relevance ranking, algorithms

1. Introduction

The most common way to return a set of documents obtained from a Web query is by a

ranked list. The search engine attempts to determine which document seems to be the

most relevant to the user and will put it first in the list. In short, every document receives

a score, or distance to the query, and the returned documents are sorted by this score or

distance.

There are situations where the sorting by score may not be the most useful one. When

a more complex query is done, composed of more than one query term or aspect,

documents can also be returned with two or more scores instead of one. This is

particularly useful in geographic information retrieval [13], [17], [21]. For example, the

Web search could be for campgrounds in the neighborhood of Neuschwanstein, and the

documents returned ideally have a score for the query term Bcampground^ and a score

for the proximity to Neuschwanstein. This implies that a Web document resulting from

this query can be mapped to a point in the 2-dimensional plane, where both axes

represent a score. In Figure 1, the map (taken from [1]) indicates campgrounds near the

castle Neuschwanstein, which is situated close to Schwangau, with the distance to the

castle on the x-axis and the rating given by the ANWB on the y-axis.

* This research is supported by the EU-IST Project No. IST-2001-35047 (SPIRIT).

GeoInformatica 9:1, 61–84, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Another query is for example Bcastles near Koblenz.^ When mapping to the plane, a

cluster of points could be several documents about the same castle. If this castle is in the

immediate vicinity of Koblenz, all of these documents would be ranked high, provided

that they also have a high score on the term Bcastle.^ However, the user probably also

wants documents about other castles that may be a bit further away, especially when

these documents are more relevant for the term Bcastle.^ To incorporate this idea in the

ranking, we introduce multi-dimensional scattered ranking in this paper. We present

various models that generate ranked lists where closely ranked documents are dissimilar.

We also present efficient algorithms that compute scattered rankings, which is important

to keep server load low.

Multi-dimensional scattered ranking requires a spatial score and a term score. Term

scores are standard in information retrieval and these methods can be used without

adaptation. Defining appropriate spatial scores is a different problem; there are several

papers discussing this issue [2, 15, 20]. For this paper it is sufficient to know that a

spatial score can be defined and we assume that it is given.

We can also use scattered ranking to obtain geographically scattered ranked lists of

documents. In this case we use the geographic locations associated with Web documents

explicitly in two coordinates. If we also also have a term score, each document has three

values (scores) that can be used for ranking the relevant documents. Using our example,

two documents referring to two castles at the same distance from Koblenz, but in

opposite directions, may now be ranked consecutively. The geographically scattered

ranking problem is similar to the so-called settlement selection problem, which appears

in map generalization [14, 19].

There are several other reasons to rank documents according to more than one score.

For example we could distinguish between the scores of two textual terms, or a textual

term and a spatial term, or a textual term and metadata information, and so on. A

common example of metadata for a web document is the number of hyperlinks that link

to it; a document is probably more relevant when more links point to it. In all of these

cases we get two or more scores which need to be combined for the ranking.

In traditional information retrieval, the separate scores of each document would be

combined into a single score (e.g., by a weighted sum or product) which produces the

ranked list by sorting. Besides the problem that it is unclear how the scores should be

combined, it also makes a scattered ranking impossible. Two documents with the same

Figure 1. Campgrounds near Neuschwanstein mapped to points in the plane.

62 M. VAN KREVELD ET AL.

combined score could be similar documents or quite different. If two documents have

two or more scores that are the same, one has more reason to suspect that the documents

themselves are similar than when two documents have one (combined) score that is the

same.

The topic of geographic information retrieval is studied, for example, in the SPIRIT

project [13]. The idea is to build a search engine that has spatial intelligence since it will

understand spatial relationships like close to, North of, adjacent to, and inside, for

example. The core search engine will process a user query in such a way that both the

textual and the spatial relevance of a document are obtained in a score. This is possible

because the search engine will not only have a term index, but also a spatial index. Those

two indices provide the two scores that are needed to obtain a multi-dimensional

scattered ranking. The ranking study presented here is part of the geographic search

engine under development for the SPIRIT project. Several of the relevance ranking

methods discussed in this paper are available in the prototype of the spatial search

engine. Another project dealing with geographic information retrieval is the BUSTER

project [21].

Related research has been conducted in [17], which focuses on disambiguating

geographic terms of a user query. The disambiguation of the geographic location is done

by combining textual information, spatial patterns of other geographic references,

relative geographic references from the document itself, and population heuristics from a

gazetteer. This gives the final value for the geoconfidence. The georelevance is

composed of the geoconfidence and the emphasis of the place name in the document.

The textual relevance of a document is computed as usual in information retrieval. Once

both textual and geographic relevance are computed, they are combined by a weighted

sum.

Finding relevant information and at the same time trying to avoid redundancy has so

far mainly been addressed in producing summaries of one or more documents. Carbonell

and Goldstein use in [4] the maximal marginal relevance (MMR), which is a linear

combination of the relevance of the document to the user query and its independence of

already selected documents. MMR is used for the reordering of documents. A user study

has been performed, showing that users preferred MMR ranking to the usual ranking of

documents. The paper [4] contains no algorithm how to (efficiently) compute the MMR.

Following up on this, a Novelty Track of TREC [10] discusses experimenting with

rankings of textual documents such that every next document has as much additional

information as possible.

Goldstein et al. propose in [8] another scoring function for summarizing text

documents. Every sentence is assigned a score combined of the occurrence of statistical

and linguistic features. They are combined linearly with a weighting function. In [9]

MMR is refined and used to summarize multiple documents. Instead of full documents,

different passages or sentences are assigned a score.

The remainder of this paper is organized as follows. In Sections 2 and 3 we introduce

several different basic scattered ranking methods and efficient algorithms to compute

them. In Section 4 we present several extensions of the basic ranking methods. In Section

5 we show how the different ranking methods behave on real-world data.

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 63

2. Basic scattered ranking methods and algorithms

In this section we present two basic scattered ranking methods. Like in traditional

information retrieval, we want the most relevant documents to appear high in the

ranking, while at the same time avoiding that documents with similar information appear

close to documents already ranked. We will focus on the two dimensional case only,

although in principle the ideas and formulas apply in higher dimensions too. We will

discuss extensions to higher dimensions explicitly in Section 4.3.

We assume that a Web query has been conducted and a number of relevant documents

were found. Each document is associated with two scores, for example a textual and a

spatial score (which is the case in the SPIRIT search engine). The relevant documents

and the query are mapped to points in the plane. We perform the mapping in such a way

that the query is a point Q at the origin, and the documents are mapped to a set of points

P = {p1, . . . , pn} in the upper right quadrant, such that the documents with high scores are

the points close to Q. We can now formulate the two main objectives for our ranking

procedure:

1. Proximity to query: Points close to the query Q are favored.

2. High spreading: Points farther away from already ranked points are favored.

A ranking that simply sorts all points in the representation plane by distance to Q

is optimal with respect to the first objective. However, it can perform badly with

respect to the second. Selecting a highly scattered subset of points is good with

respect to the second objective, but the ranked list would contain too many documents

with little relevance early in the list. We therefore seek a compromise where both

criteria are considered simultaneously. Note that the use of a weighted sum to

combine the two scores into one as in [17] makes it impossible to obtain a scattered

ranking.

The point with the smallest Euclidean distance to the query is considered the most

relevant and is always first in any ranking. The remaining points are ranked with respect

to already ranked points. At any moment during the ranking, we have a subset R Î P of

points that have already been ranked, and a subset U Î P of points that are not ranked

yet. We choose from U the Bbest^ point to rank next, where Bbest^ is determined by a

scoring function that depends on both the distance to the query Q and the set R of ranked

points. Intuitively, an unranked point has a higher added value or relevance if it is not

close to any ranked points.

For every unranked point p, we consider only the closest point pi 2 R, where

closeness is measured either in the Euclidean sense, or by angle with respect to the

query point Q. This is illustrated by jj p j pijj and �, respectively, in Figure 2. Using

the angle to evaluate the similarity of p and pi seems less precise than using the

Euclidean distance, but it allows more efficient algorithms, and certain extensions of

angle-based ranking methods give nicely scattered results. See the experiments in

Section 5 for this. We will first present the basic models, and then give the algorithms in

Section 2.3.

64 M. VAN KREVELD ET AL.

2.1. Distance to query and angle to ranked

Our first ranking method uses the angle measure to obtain the similarity between an

unranked and a ranked point. In the triangle DpQpi (see Figure 2) consider the angle

� = �(p, pi) and rank according to the score S(p, R) 2 [0, 1], which can be derived

from the following normalized equation:

S p;Rð Þ ¼ min
pi2R

2 � p; pið Þ þ cð Þ
�þ 2c

� 1

1þ pk k

� �k
 !

ð1Þ

Here, k > 0 denotes a constant. If k is small, the emphasis lies on spreading, and if k is

large, we give a large importance to the proximity to the query. The additive constant

c > 0 ensures that all unranked points p 2 U are assigned an angle dependent factor

greater than 0. This is necessary if several points lie on the same halfline originating in

Q. The score S(p, R) necessarily lies between 0 and 1, and is appropriate if we do not

have a natural upper bound on the maximum distance of unranked points to the query. If

such an upper bound were available, there are other formulas that give normalized scores.

2.2. Distance to query and distance to ranked

In the previous section we ranked by angle to the closest ranked point. It may be more

natural to consider the Euclidean distance to the closest ranked point instead. In Figure 2,

consider the distance jj p j pijj from p to the closest ranked point pi and rank according

to the outcome of the following equation:

S p;Rð Þ ¼ min
pi2R

p� pik k
pk k2

 !
ð2Þ

The denominator needs a squaring of jjpjj (or another power > 1) to assure that

documents far from Q do not appear too early in the ranking, which would conflict with

Figure 2. An unranked point p amidst ranked points p1, p2, p3, pi, where p is closest to pi by distance and by

angle.

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 65

the proximity to query requirement. A normalized equation such that S(p, R) 2 [0, 1] is

the following:

S p;Rð Þ ¼ min
pi2R

1� e��� p�pik k� �� 1

1þ pk k

� �
ð3Þ

Here, � > 0 is a constant that defines the base e� of the exponential function.

2.3. Basic algorithms

For both methods described above, during the ranking algorithms we always choose the

one unranked point p that has the highest score S(p, R) and rank it next. This implies an

addition to the set R and hence, recomputation of the scores of the other unranked points

may be necessary.

In this section we describe two simple algorithms that can be applied for the basic

methods as well as for the other methods we present in the next section. We assume that

relevant documents have already been retrieved and mapped to points in the plane. We

only describe the scattered ranking algorithms themselves.

A very straightforward implementation of the ranking algorithms take O(n3) time,

where n is the number of points to be ranked. However, by maintaining the closest

ranked point for each unranked point in evidence, we can create a very simple, generic

algorithm which has a running time of O(n2). The distance referred to in steps 2(a) and 4

can be interpreted either as angle or as Euclidean distance in the plane.

Algorithm 1: Given: A set P with n points in the plane.

1. Rank the point r closest to the query Q first. Add it to R and delete it from P.

2. For every unranked point p 2 P do

(a) Store with p the point r 2 R as the closest point

(b) Compute the score S(p, R) = S(p, r) and store it with p

3. Determine and choose the point p with the highest score S(p, R) to be next in the

ranking; add it to R and delete it from P.

4. Compute for every point p0 2 P the distance to the last ranked point p. If it is smaller

than the distance to the point stored with p0, then store p with p0 and update the score

S(p0, R).

5. Continue at step 3 if there are still unranked points.

The first four steps of this algorithm all take linear time. As we need to repeat

steps 3 and 4 until all points are ranked, the overall running time of this algorithm

is O(n2). If we are only interested in the top 10 documents of the ranking, we only need

linear time for the computation. More generally, the top t documents are determined in

O(tn) time.

The next algorithm is a variation of the first, and computes the same ranking. It uses a

Voronoi diagram to find the closest unranked points to a ranked point p. Its worst case

66 M. VAN KREVELD ET AL.

running time is the same as of Algorithm 1, namely O(n2); however, a typical case

analysis shows that it generally runs in O(n log n) time in practice.

Algorithm 2: Given: A set P with n points in the plane.

1. Rank the point r closest to the query Q first. Add it to R and delete it from P. Initialize a

list with all unranked points and store it with r. Determine the point p in this list with

the highest score and insert it in an initially empty priority queue H.

2. Choose the point p with the best overall score from the priority queue H as next in the

ranking; add it to R, delete it from P, and update the structures:

(a) Delete p from the priority queue H.

(b) Insert p as a new site in the Voronoi diagram of R.

(c) Create for the newly created Voronoi cell V(p) a list of unranked points that lie in

V(p) by traversing the list of each ranked point p0 whose Voronoi cell V(p0)
neighbors V(p), removing the points from it that are closer to p than to p0, and

adding these points to the list of p.

(d) Compute the point with the best score for the newly created Voronoi cell V(p)

and insert it in a priority queue H. For all Voronoi cells whose lists changed,

recompute the unranked point with the best score and update the priority queue H

accordingly.

3. Continue at step 2 if the priority queue is non-empty.

For the efficiency analysis, assume first that we used the distance to ranked version for

assigning scores. Then the Voronoi diagram is the usual planar subdivision, and the

average degree of a Voronoi cell is almost six. One can expect that a typical addition of a

point p to the ranked points involves a set of neighbors R0 � R with not many more than

six ranked points. If we also assume that, typically, a point in R0 loses a constant fraction

of the unranked points in its list, we can prove an O(n log n) time bound for the whole

ranking algorithm. The analysis is the same as in [11], [19]. In the angle to ranked

version of assigning scores, the set of neighbors R0 will have only two ranked points.

We conclude with the following theorem:

Theorem 1: A set of n points in the plane can be ranked according to the basic

scattered models in O(n2) time in the worst case. By maintaining a Voronoi diagram of

the closest points, the points can be ranked in O(n log n) time under certain natural

assumptions.

3. Other scattered ranking methods and algorithms

In this section we present more basic ranking methods, namely addition methods and a

wavefront approach. The addition methods are simple variations of the ideas of the

methods from Section 2. Instead of dividing the angle (or distance) of a point p to the

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 67

closest ranked point by the distance of p to the query, we add those two values (one of

them inverted). We can adapt both algorithms given above. However, as we will see in

Section 3.1, for one of the methods we can give an algorithm with better running time.

The wavefront method is in a way an inversion of the ideas of the basic methods. In the

last section, we ranked the point with the highest score according to some scoring

function next. For a fixed set of ranked points, the subset of the plane with the same

score is a set consisting of curved pieces. When decreasing the score, the curved pieces

move and change shape. The next point to be ranked is the one encountered first by these

curves when decreasing the score. In Section 3.2 we will use this process instead of a

scoring function to define a ranking: we predefine the shape of a wavefront and move it

until it hits a point, which will be ranked next. As before, we first introduce the methods,

and then present the algorithms in Section 3.3.

3.1. Addition methods

So far, both our scattered ranking methods were based on a scoring function that

essentially is a division of the angle or distance to the closest ranked point by the

distance to the query. In this way, points closer to the query get a higher relevance. We

can obtain a similar effect, but a different ranking, by adding up two terms, obtained

from the angle or distance to closest ranked point, and the distance to the query. The

term depending on the distance to the query should be such that a larger distance gives a

lower score. Although it is unusual to add angles and distances, it is not clear beforehand

which method will be more satisfactory for users, so we analyse these methods as well. If

the results are satisfactory, this method may be the one of choice, since it allows a very

efficient algorithm.

S p;Rð Þ ¼ min
pi2R

� � 1� e�� � pk k= pmaxk kð Þ
� �

þ 1� �ð Þ � � p; pið Þ � 2

�

� �
ð4Þ

In this equation, pmax is the point with maximum distance to the query, � 2 [0, 1]

denotes a variable which is used to put an emphasis on either distance or angle, and � is a

constant that defines the base of the exponential function.

Another, similar, addition method adds the distance to the query and the distance to

the closest ranked point:

S p;Rð Þ ¼ min
pi2R

� � 1� e��1� pk k= pmaxk kð Þ
� �

þ 1� �ð Þ 1� e��2 � p�p ik kð Þ
� �� �

ð5Þ

Again, pmax is the point with maximum distance to the query, � 2 [0, 1] is a variable

used to influence the weight given to the distance to the query (proximity to query) or to

the distance to the closest point in the ranking (high spreading), and �1 and �2 are

constants that define the base of the exponential functions.

68 M. VAN KREVELD ET AL.

3.2. The wavefront approach

The ranking methods presented so far can also be described visually. For example,

consider the distance to query and angle to ranked method of Section 2.1. At any

moment in the algorithm, some selection has been made, and the next point for the

ranking must be found. This point is the first point hit by a wavefront of a particular

shape, as shown in Figure 3. From the shape of the wavefront it is clear that points that

are not closest to the query could easily be chosen next, if the angle of the vector p (with

the positive x-axis) is not close to the angle of pi for any previously ranked point pi. This

illustrates the desired behavior of trying to choose a point next that is different from

already ranked points. We can derive new ranking methods by specifying the shape of

the wavefront instead of a scoring function. At the same time, the idea gives rise to

other ways to compute the ranking.

Figure 3 depicts the positions in space where the score values are the same, namely

0.05, for the three ranked reference points p1 = (1, 1), p2 = (2, 3), and p3 = (7, 2). The

functions themselves are arccos (dist to closest/dist to query)/dist to query (constants

omitted). They can easily be derived from Equation 1. Note that the curves are

symmetric with respect to the line starting at the origin and passing through the ranked

point they correspond to, and that the intersection with this line lies on a circle with the

same radius r for all three curves. Furthermore, two curves of neighboring sectors meet

exactly at the bisecting lines between the ranked points.

Figure 3. Wavefront of the angle method of Section 2.1. The solid line is the locus of all points p, such that

the score S(p,{ p1, p1, p3}) = a, a = 0.05. The wavefront moves when a is increased.

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 69

3.3. Efficient algorithms for addition and wavefront model

For both methods described above, Algorithms 1 and 2 can be applied, which gives a

worst case running time of O(n2) in both cases. But in fact, we can seriously improve the

worst cake running time with a different algorithm. As the angle �(p, pi) is an additive

and not a multiplicative part of the score equation, we can give an algorithm with a worst

case running time of O(n log n) for the angle-distance addition method. We will also

present an algorithm for the piecewise linear wavefront method which computes such a

ranking in O(n log2 n) time in the worst case.

3.3.1. The angle-distance addition algorithm. To initialize for the ranking algorithm,

we select the point r from P that is closest to the query and rank it as the first point. Then

we build two augmented binary search trees, one for the subset of points P0 � P \{r} that

are below the line through Q and r and one for the subset P1 = P \{r} j P0 of points

above or on this line.

The point set P0 is stored in the leaves of a binary tree T0, sorted by counterclockwise

(ccw) angle to the y-axis. In every leaf of the tree we also store: (i) ccw and clockwise

(cw) angle to r and to the x-axis respectively; (ii) the distance to the query; (iii) ccw and

cw score, where the angles used are taken from (i). We augment T0 as follows

(see e.g., [5]) for augmenting data structures): In every internal node we store the best cw

and the best ccw score per subtree. We additionally store for the whole tree T0 that its

closest ranked point, r, is counterclockwise, and correction values, one cw and one ccw,

to be used later. They are additive corrections for all cw and ccw scores of points in the

whole tree. Note that the augmentation allows us to descend in a tree towards the point

with the best score along a single path; at any node we simply proceed in the subtree that

contains the point with the higher score (cw or ccw score, depending on the information

stored with the tree).

The point set P1 is stored in the same way in a tree T1, with the following differences.

The cw angle used in the leaves is to r and the ccw angle is taken to the y-axis, and we

store for the whole tree that its closest ranked point, r, is clockwise. Finally, we initialize

a priority queue with the point from T0 with the best score and the point from T1 with the

best score.

During the algorithm, for every ranked point two trees are present. It is easy to see that

all trees T2i + l, i = 0. . .m j 1 have their closest ranked point in cw direction, whereas all

trees T2i, i = 0. . .m j 1, have their closest ranked point in ccw direction. As shown left in

Figure 4, between two already ranked points p1 and p2, indicated by ‘1 and ‘2, there are

two binary trees, T1 cw and T2 ccw of the bisecting line ‘12. All the points in T1 are closer

in angle to p1 and all the points in T2 are closer in angle to p2. If we insert a new point p3

to the ranking, this means we insert a new imaginary line ‘3 through p3 and we need to

perform the following operations on the trees:

1. Split T1 and T2 at the bisecting lines ‘32 and ‘13, creating the new trees T 0cw, and T 0ccw

and two intermediate trees Tcw and Tccw

70 M. VAN KREVELD ET AL.

2. Concatenate the intermediate trees from (1), creating one tree T.

3. Split T at the newly ranked point p3, creating T 00cw and T 00ccw .

Figure 4 right, shows the outcome of these operations. Whenever we split or concatenate

the binary trees we need to make sure that the augmentation remains correct. In our case,

this is no problem, as we only store the best initial scores in the inner leaves. However,

we need to update the information in the root of each tree about the closest cw and ccw

ranked point and the correction values. The former is easy to update. For the correction

values, note that all scores for points in the same tree are calculated with respect to the

same ranked point and they change with the same additive amount in the addition model.

Therefore, we should simply subtract 1� �ð Þ � �0 � 2=� from the scores, where �0

denotes the angle between the previously closest ranked point cw (ccw) and the newly

closest ranked point cw (ccw, respectively). For efficiency reasons, we do not do this

explicitly but in once using the cw (or ccw) correction value. So we subtract

1� �ð Þ � �0 � 2=� from the appropriate correction value. If there is no previously

closest ranked point cw or ccw (first and last trees), then we take the angle between the

newly ranked point and the x-axis or y-axis instead.

Furthermore we need to update the score information in the priority queue. This

involves deleting scores that are no longer valid, and inserting scores that are new best

scores in a tree. Now we can formulate an algorithm for the addition method that runs in

optimal O(n log n) time.

Algorithm 3: Given: A set P with n points in the plane.

1. Determine the closest point r and remove it from P, split P \{r} into sets P0 and P1 as

described, and initialize the augmented trees T0 and T1. Determine the points in T0

and T1 with the best score an store them in a priority queue H.

2. Choose the point p with the highest score as next in the ranking by deleting the best

one from the priority queue H.

3. For every last ranked point p do:

(a) Split and concatenate the binary trees as described above and update the information

in their roots.

Figure 4. The split and concatenate of trees in Algorithm 3.

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 71

(b) Update the best score information in the priority queue H:

i. Delete the best score of the old tree T1 or T2 that did not contain p.

ii. Find the four best scores of the new trees T 0cw; T
0
ccw;T

00
cw; and T 00ccw and insert

them in the priority queue H.

4. Continue at step 2 if the priority queue is non-empty.

The initialization (step 1) takes O(n log n) time. Step 2 takes O(log n) time for each

execution. In step 3, the split and concatenate of at most four binary trees, takes O(log n)

time for each tree. Updating the best score information in the priority queue also takes

O(log n) time. So, overall, the algorithm takes O(n log n) time in the worst case.

Note that this algorithm is not applicable for the second addition method, where we

add up the distance to closest and the distance to the query. This is easy to see, since the

distance to the closest ranked point does not change by the same amount for a group of

points. This implies that the score for every unranked point needs to be adjusted

individually when adding a point to R, which is done by the two basic algorithms.

Theorem 2: A set of n points in the plane can be ranked according to the angle-

distance addition method in O(n log n) time.

3.3.2. The wavefront algorithm. The linear wavefront method generates a ranking as

follows (see Figure 5). Assume a set P of n points in the plane is given, and also an angle

� which, intuitively, captures how much preference should be given to scattering. It is

the angle between a segment of the wavefront and the nearest (by angle) line through Q

and a ranked point. Let p1, . . . , pi be the points ranked so far. Draw lines ‘1, . . . ,‘i where ‘j

passes through Q and pj, where 1 e j e i and remove duplicates, if any. Assume without

loss of generality that the lines ‘1, . . . ,‘i are sorted by slope in non-increasing order

(steepest first). Consider a circle Cs with radius s centered at Q. The wavefront for

p1, . . . , pi and s (Figure 5) is defined as the polygonal line v1, v2, . . . ,v2i + 1, where v2j is

the intersection point of ‘j and Cs for 1 e j e i, and the edges v2jj1v2j and v2jv2j + 1 make

Figure 5. Illustration of the linear wavefront method.

72 M. VAN KREVELD ET AL.

an angle � with the line ‘j. This defines the position of the vertices v3, v5 , . . . ,v2j j 1.

Vertex v1 is on the y-axis such that v1v2 includes an angle � with ‘1, and vertex v2j + 1 is

on the x-axis such that v2jv2j + 1 includes an angle � with ‘i. When s is increased, the

segments of the wavefront move away from Q and they get longer, but they keep their

orientation.

Algorithm 4: The first point in the ranking is the point of P that is closest to the query

Q. The next point p in the ranking is determined as follows. Start with s = 0 and increase

s continuously until some segment of the linear wavefront hits the first non-ranked point.

This point p is ranked next. Then restart (or continue) the growing of s with the new

wavefront, which has two more vertices and two more segments.

To implement this ranking scheme efficiently we use a geometric data structure that

allows us to find the next point p in O(log2 n) time. Since we will perform n j 1 queries,

the total time to rank will be O(n log2 n). The data structure to be designed stores all

unranked points and must be able to answer queries SEGMENTDRAG (�, , �), where the

first point hit by a moving and growing line segment must be found. The moving and

growing line segment is specified by the three angles �, , and �, and is defined by two

consecutive vertices of the wavefront. Let ‘� and ‘ be the lines through Q that have

angle �, respectively with the positive x-axis. The line segment that is moved and

grows has its endpoints on ‘� and ‘ , and makes an angle � with ‘� (if the endpoint on ‘�
is closer to Q than the endpoint on ‘ , or with ‘ otherwise).

Assume that all points of P lie between the lines ‘� and ‘ . Then the query problem

reduces to querying with a full line that lies outside the convex hull of P and is translated

towards P. The data structures of Hershberger and Suri [12] and Brodal and Jacob [3]

have linear size, O(log n) deletion time, and answer queries in O(log n) time amortized.

These data structures are dynamic convex hull query structures.

For a data structure that can answer SEGMENTDRAG (�, , �), we store the set P sorted

by angle in the leaves of a binary search tree T. For an internal node v, denote by Tv the

subtree of T rooted at v, and by Pv � P, the subset of points that are stored in the leaves

of Tv. For any internal node v, we store a pointer to an associated structure T 0v which

stores the points Pv in a data structure for dynamic convex hull queries [3], [12]. The

technique of extending a data structure by adding a one-dimensional range restriction

(here on angle) is quite standard [16], [22] and used for instance for orthogonal range

queries [6]. The storage requirements, preprocessing time, query time, and update time

all increase by a factor of O(log n). This implies that a SEGMENTDRAG query can be

answered in O(log2 n) time with a data structure that has size O(n log n), construction

time O(n log2 n), and deletion time O(log2 n).

To obtain an O(n log2 n) time algorithm for ranking in the linear wavefront method,

we maintain a set of candidate points to be ranked next in a priority queue. We store one

point for each sector defined by lines ‘j and ‘j + 1, where ‘j (and ‘j + 1) is the line through Q

and the point vj (resp. vj + l) on the linear wavefront, where 1 e j e 2i. The point we store

in a sector is the one that is hit for the lowest value of s, the radius of the circle that

defines the wavefront. The overall best candidate, and hence the point to be ranked next,

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 73

is the one with the lowest value of s among all candidates. Since the candidates are

stored in a priority queue H, the best one can be found and extracted in O(log n) time.

After selecting and ranking a point p we must update the priority queue H and the data

structure for SEGMENTDRAG queries. The first update is easy; it is the deletion of point p.

To update H further, we must first delete the best candidate in every sector that has

changed due to the ranking of p. There can be at most two such sectors, so we delete two

points from the priority queue. Then we must find the new best candidate in every new

sector arising due to the ranking of p. There are at most four new sectors, and we find the

new candidates by four SEGMENTDRAG queries. These new candidates are then inserted in

the priority queue H, which prepares it for ranking the next point.

We can conclude with the following theorem:

Theorem 3: A set of n points in the plane can be ranked according to the linear

wavefront method in O(n log2 n) time.

4. Extensions of the basic ranking methods

In this section we present extensions of the basic ranking methods introduced in Sections 2 and 3.

We divided the given point set P into the set of already ranked points R and the set of unranked

points U during the algorithms. We chose the candidates to be ranked next from all points in U

and computed the score functions with respect to all ranked points in R. In this section we

present two extensions where this is not the case anymore. The staircase enforcement extension

limits the set of candidates to be ranked next to the points in U that lie on the staircase of the

point set P. The limited windows method limits the set of ranked reference points to be used

for the score computation to only the last k ranked points. Furthermore, we will describe the

necessary adaptations of the algorithms in higher dimensions.

4.1. Staircase enforcement

In the basic methods, every unranked point was eligible to be next in the ranking, if it

had the highest score. This can lead to a ranking where a point is ranked before other

points that are better in both aspects. Often this is an undesirable outcome. As an

alternative, we choose the candidates to be ranked next only from the points p that lie on

the staircase of the point set. A point p is on the lower left staircase of the point set P if

and only if for all p0 2 P \{ p}, we have px < p0x; or py < p0y; or px ¼ p0x and py ¼ p0y . If

we always select from the staircase of unranked points, we automatically obtain the

property that any ranked document is more relevant in at least one aspect than all

documents that are ranked later.

We can easily adapt the basic ranking algorithms for staircase enforcement. We

consider as eligible candidates for next in the ranking only the points on the staircase of

unranked points, which we maintain throughout the algorithm. When a point is ranked,

the staircase has to be updated, and points that are new on it become eligible too.

74 M. VAN KREVELD ET AL.

Computing the staircase of a point set with n points takes O(n log n) time, insertion or

deletion of one point takes O(log n) time per point. In every update of the staircase, we

delete one point from it. There can be as many as a linear number of points that need to

be inserted in one update, so a single update can have a running time of O(n log n).

However, every point of P is inserted to the staircase and deleted from it exactly once.

This means that maintaining the staircase takes only O(n log n) time during the entire

execution of the algorithm.

In the following, a brief description of the necessary changes to the basic algorithms is

given.

In the generic Algorithm 1, which can be used for all models, we compute the

staircase at the beginning, and then we only need to change step 3 as follows:

3. Update the staircase of P and choose from the points on the staircase the one with

highest score S(p, R) as next in the ranking; add it to R and delete it from P and from

the staircase.

Computing the staircase in the beginning takes O(n log n) time. We only need to do this

once. Updating the staircase in step 3 takes O(log n) time per insertion and deletion, and

the other computations can be performed in constant time. As this step needs to be

repeated n times, it takes O(n log n) time overall, and hence, staircase enforcement does

not influence the total running time of O(n2).

In Algorithm 2 for the angle and distance models, we maintain the Voronoi diagram of

all ranked points, and for each Voronoi cell, a list of all unranked points in that cell. The

main adaptation is that only points on the staircase of unranked points are stored in the

priority queue. That is, for every list of a Voronoi cell the point with highest score and

that lies on the staircase will be in the priority queue. We must also maintain the staircase

of unranked points throughout the algorithm to have this information. Neither the worst

case nor the typical time analysis change in this case, so the worst case time bound is still

O(n2), and the typical running time remains O(n log n).

For Algorithm 3 we change the algorithm as follows: We start by computing the

staircase of the point set P \{r} and create the initial, augmented trees T0 and T1 only for

the points from the staircase. The priority queue is initialized with the best points from T0

and T1. We rank the next point p, update the corresponding trees and the priority queue

as before, and delete p from the staircase. Step 4 needs to be modified as follows:

4. Update the staircase to incorporate the deletion of p. Insert the new points on the stair-

case into the binary trees while keeping the augmentation correct. Update the best-

score information in the priority queue. Continue with step 2 if the priority queue is

non-empty.

The new version of step 4 takes O(n log n) time overall, so the total running time of

O(n log n) is not affected.

Algorithm 4 for the wavefront model is also easy to adapt. In the original model, we

move a line segment towards the convex hull of the whole point set P and rank the first

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 75

point that is hit next. Here, the point set is restricted to the points of P that lie on the

staircase of P. We do not need to change any of the data structures described in Section 3,

but we need to precompute the staircase once (O(n log n) time) and maintain it through

the algorithm (O(log n) time per insertion and deletion). This leaves the asymptotic

running time of the wavefront algorithm unchanged.

4.2. Limited windows

In all the previously presented basic ranking methods as well as in the staircase enforced

extensions, the closest point from the set R of ranked points is used to determine the

score of an unranked point. However, if the second best point lies very close to the best

point, it should not be late in the ranking just because it is very similar to the best point.

We would like the influence of a ranked point to stop after, say, another ten points have

been ranked after it. This is captured in the limited windows extension, where only the k

latest ranked points are kept in evidence for the future ranking. The value of k is fixed

throughout the algorithm.

The general idea is as follows. We store the set of ranked points that we consider in a

queue W, which we will call the window. The basic algorithms remain exactly the same

as long as the size of W does not exceed k. When the (k + 1)-th point is ranked, we add it

at the tail of the queue and delete the point p at the head of it. For all unranked points that

had the deleted point p as their closest, we need to find the new closest point among the k

ranked points in W and recompute their score.

We give a brief description of the necessary adaptations of the basic algorithms in the

next paragraphs. An adaptation of the staircase enforced methods to get a combination of

the two extensions is straightforward and therefore not given here. We assume that k is

fixed.

The adaptation of Algorithm 1 is straightforward. We now determine in step 4 for all

unranked points p0 the smallest distance to the k last ranked points in R to determine the

score of each unranked point. This clearly takes O(kn) time for each next ranked point,

so the overall running time of the algorithm is O(kn2). If we allow O(kn) extra storage,

we can store with every unranked point all k last ranked points sorted by distance. We

can keep the sequence of all k points sorted in O(n2 log k) time in total.

Algorithm 2 for the angle or distance model is adapted as follows. We keep all ranked

points in a queue W. When W contains more than k points, we delete the first point p

from the queue and from the Voronoi diagram of R. All unranked points that lie in the

Voronoi cell of p need to be redistributed to the at most k neighboring cells, which means

that their lists of unranked points need to be updated. Furthermore, we need to recompute

the highest score value from these k lists and update the priority queue H accordingly.

The worst case time analysis for deleting one point from the window is as follows. The

operations on W only take constant time each. Deleting the point p from the Voronoi

diagram can be done in O(k) time. There can be a linear number of unranked points that

need to be redistributed, which takes O(kn) time in the worst case. Updating the k lists

can be done in O(n) time in total and updating the heap takes O(k log k) time. This leads

76 M. VAN KREVELD ET AL.

to an overall worst case running time of O(kn2). This can be improved to O(n2 log k)

time by doing the redistribution more cleverly.

In a typical time analysis we can delete a point p from the queue and the Voronoi

diagram in O(1) time. The list of p containsVon the average and once k points are

rankedVO(n/k) points, and redistributing them to the O(1) neighboring cells takes O(n/k)

time. Updating the priority queue H takes O(log k) time typically. Overall we therefore

get a typical running time of O(n2/k + n log k).

Algorithm 3 for the addition model can be easily adapted. As before, every ranked

point is added to a queue W. When it contains more than k points, the first element p is

deleted from the head of the queue, which means that we delete the imaginary line ‘; that

passes through p. We have to concatenate the four binary trees that lie between p and its

closest clockwise neighbor p0 and counterclockwise neighbor p0, thus creating one tree T.

We then split T at the angle of the bisecting barrier line ‘p0p00. During the concatenate and

split operations we need to keep the augmentation correct. Finally, we need to update the

best score information in the priority queue H, which means that we delete the best

scores of the old trees and insert the best scores of the new trees. The analysis of the

running time is similar as before, and the asymptotical running time does not change.

For the wavefront method, Algorithm 4 can be adapted in a similar manner. We add

every ranked point to a queue W, and if it contains more than k points, the first element p

is deleted from the head of the queue, which means that we delete the line ‘p that passes

through p. Thus, we create one new sector out of two old ones. We delete the three

vertices vp j 1, vp, and vp + 1 of the wavefront and add one new vertex, namely the

intersection of the two edges that make an angle � with the bounding lines of the new

sector. Finally, we need to delete the two old candidate points of the old sectors from the

priority queue and insert the new candidate point of the new sector into it. The overall

running time remains O(n log2 n) in the worst case.

4.3. Higher dimensions

So far, we have considered only two possible scores that are combined to give a scattered

ranking. The applications from the introduction show that dealing with more than two

scores for each point in the point set P can also be useful. For example, for the query

Bcastles near Koblenz,^ there could be two castles with the same distance to Koblenz,

one north and one south of it. If the documents about them have a similar textual score,

they will be mapped to points in the plane which are very close to each other, and

therefore they will be ranked apart. However, in this example, this outcome is

unsatisfactory, and it would be better if we could distinguish the relative position of

the castles to Koblenz by using two spatial dimensions (scores) and one textual score.

The four presented methods can be used for any number of scores. Computing the ranking

requires extending the basic algorithms to higher dimensions. However, not all of the

algorithms presented in Sections 2 and 3 can be extended to work as efficiently in higher

dimensions. In this section we will briefly discuss the extensions of the presented algorithms

to higher dimensions, where possible, or otherwise, state why this cannot be done.

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 77

The generic Algorithm 1, which can be applied to all four presented models, works as

presented in any dimension d. Therefore, we conclude that the worst case running time

for the generic algorithm is O(n2) in any dimension.

Algorithm 2 for the basic models can be extended to higher dimensions d Q 3, but the

worst case running time will go up with the dimension. We maintain the d-dimensional

Voronoi diagram for the ranked points, and for each cell we maintain the unranked

points in that cell in a list. The point with the highest score value per list is stored in a

priority queue, where the next point to be ranked is chosen from.

For d Q 3, the Voronoi diagram has complexity O(n(d/21) in the worst case, and it can be

constructed in O(n(d/21) time [7]. It can also be constructed in O(N log n) time, where N is

the actual complexity of the Voronoi diagram [18]. This leads to O(n(d/21) time to rank a

set of n points in d dimensions, d Q 3, in the distance model. The Voronoi diagram for the

angle model in three dimensions can be determined as follows: we project the ranked

points to the surface of the unit sphere and compute the Voronoi diagram on this surface,

which essentially is a 2-dimensional Voronoi diagram. In general, the Voronoi diagram

needed for the angle model for point sets in d-dimensional space has dimension d j 1.

Consequently, in the angle model, ranking can be done in O(n((dj1)/21) = O(n)d/22) time for

d Q 4, and in O(n2) time for d = 3.

To analyze the typical running time for the algorithm in higher dimensions, we will

make some assumptions and show time bounds under these assumptions. Whether the

assumptions hold in practice cannot be verified without implementation. We will assume

that any newly ranked point only has a constant number of neighbors in the Voronoi

diagram, and every list has length O(n/r), where r is the number of ranked points so far.

Note that the former assumption is, in a sense, stronger than in the planar case, because

there are point sets where the average number of neighbors of a cell in the Voronoi

diagram is linear, when d Q 3. However, for uniformly distributed point sets, a higher-

dimensional Voronoi diagram has linear complexity [7], and the average number of

neighbors of a cell is indeed constant. Under these two assumptions, we can obtain a

running time of O(n log n), as in the planar case.

Algorithm 3 for the addition model cannot be extended to higher dimensions d Q 3. In the

plane we have a linear ordering by angle on the point set P. This ordering is crucial for the

functioning of the algorithm, because the split and concatenate operations are with respect

to this ordering. In three or more dimensions the approach does not apply anymore.

It is possible to extend the wavefront model to higher dimensions, but the higher-

dimensional version of Algorithm 4 would be complex and considerably less efficient. It

would require linearization and higher-dimensional partition trees. The highly increased

problem complexity in higher dimensions makes it not worthwhile to discuss it any

further.

5. Experiments

We implemented the generic ranking Algorithm 1 for the basic scattered ranking

methods described in Sections 2.1, 2.2, and 3.1. Furthermore we implemented the

78 M. VAN KREVELD ET AL.

extensions for staircase enforcement (Section 4.1) and limited windows (Section 4.2).

We compare the outcomes of these algorithms for the two different point sets shown in

Figure 6. The point set on the left consists of 20 uniformly distributed points, and the

point set on the right shows the 15 highest ranked documents for the query Fsafari africa_
which was performed on a data set consisting of 6,500 Lonely Planet web pages. The

small size of the point sets was chosen out of readability considerations.

5.1. Basic ranking algorithms

Figure 6 shows the output of a ranking by distance to query only. It is useful as a

reference when comparing with the other rankings.

In the other basic ranking methods, shown in Figure 7, points close together in the

plane are not necessarily close in the ranking sequences. This is visible in the Fbreaking

up_ of the cluster of four points in the upper left corner of the Lonely Planet point set

rankings. Note also that the points ranked last by the simple distance ranking are always

ranked earlier by the other methods. This is because we enforced higher spreading over

proximity to the query by the choice of parameters. The rankings are severely influenced

by this choice. In our choice of parameters we did not attempt to obtain a Bbest ranking.^
We used the same parameters in all three ranking methods presented here, to simplify

qualitative comparison.

5.2. Staircase enforced ranking algorithms

In the staircase enforced methods, shown in Figure 8, the candidates to be ranked next

are only those points that lie on the (lower left) staircase of the unranked points. The

Figure 6. Ranking by distance to origin only.

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 79

Figure 7. Left: Ranking by distance to origin and angle to closest (k = 1, c = 0.1). Middle: Ranking by

distance to origin and distance to closest (Equation 3, � = 0.05). Right: Ranking by additive distance to origin

and angle to closest (� = 0.4, � = 0.05).

Figure 8. Same as Figure 7, but now staircase enforced.

80 M. VAN KREVELD ET AL.

scoring functions and parameters are as before. With this adaptation, proximity to the

query gets a higher importance than before. This is clearly visible in the figures, as the

points farthest away from the query are almost always ranked last. Still, spreading in

the rankings is present. This can for instance be seen from the two points in the lower

right corner of both point sets: they are the closest pair of points in space, but their

ranking differs significantly. In fact, this is just the behavior we expected from our

scattered ranking methods.

5.3. Ranking algorithms with limited windows

In the last experiments, shown in Figure 9, the already ranked reference point we need to

compute angle or distance to, is not the closest of all ranked, but the closest among the

five last ranked points. This way we want to avoid that the angle or distance to the

closest becomes too small to ensure a good scattering. The scoring functions and

parameters are as before. With a window size of five, the first six ranked points are the

same as with the basic models. It can be seen that points that lie very close to early

ranked points are now ranked higher than with the basic methods, although the overall

ranking remains well spread.

Figure 9. Same as Figure 7, but now with a limited window of size 5.

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 81

6. Conclusions

This paper introduced multi-dimensional scattered relevance ranking for documents that

have two or more scores. It is particularly useful for geographic information retrieval,

where documents have both a textual and a spatial score. Scattered ranking combines

high relevance of the query while avoiding redundancy. To our knowledge, it is the first

time that these issues have been addressed with a purely geometric approach.

We have presented several methods for scattered ranking that are mainly based on a

combination of the distance to the query and the distance to the closest already ranked

point. Furthermore, we presented two extensions of the given basic methods, by staircase

enforcement and limited windows. We first presented a generic algorithm with quadratic

running time, which can be used for any of the presented methods and in any dimension.

For some of the methods we can give efficient algorithms with better worst case running

time.

The conducted experiments indicate that both requirements for a good ranking, small

distance to query and high spreading, can be obtained simultaneously. Especially the

staircase enforced methods and the methods with limited windows seem to perform well.

However, our reasoning is based on visual inspection of the outcome of our

experiments only. Still, a user evaluation is needed to discover which ranking method

is preferred, and which specific parameters should be used. The implementations of our

scattered ranking methods are part of the prototype of the spatial search engine under

development within the SPIRIT project. Experiments to be done after completion of the

prototype and the test collection will reveal whether users appreciate the scattered

ranking option when results are presented.

References

1. ANWB. Campinggids 2, 2002.

2. A. Arampatzis and M. van Kreveld. BImplementation of simple geographic similarity measures.^ Report

5102 of the SPIRIT project, 2003.

3. G.S. Brodal and R. Jacob. BDynamic planar convex hull,^ in Proc. 43rd IEEE Sympos. Found. Comput.

Sci., 617Y626, 2002.

4. J.G. Carbonell and J. Goldstein. BThe use of MMR, diversity-based reranking for reordering documents and

producing summaries,^ Research and Development in Information Retrieval, 335Y336, 1998.

5. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. BIntroduction to algorithms.^ MIT Press, Cambridge, MA,

1990.

6. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. BComputational Geometry: Algorithms

and Applications.^ Springer-Verlag, Berlin, 1997.

7. S. Fortune. BVoronoi diagrams and delaunay triangulations,^ in D.-Z. Du and F.K. Hwang (Eds.),

Computing in Euclidean Geometry, volume 4 of Lecture Notes Series on Computing, 225Y265, World

Scientific, Singapore, 2nd edition, 1995.

8. J. Goldstein, M. Kantrowitz, V.O. Mittal, and J.G. Carbonell. BSummarizing text documents: Sentence

selection and evaluation metrics,^ Research and Development in Information Retrieval, 121Y128, 1999.

9. J. Goldstein, V.O. Mittal, J.G. Carbonell, and J.P. Callan. BCreating and evaluating multi-document

sentence extract summaries,^ CIKM, 165Y172, 2000.

82 M. VAN KREVELD ET AL.

10. D. Harman. BOverview of the TREC 2002 novelty track,^ in NISI Special Publication 500Y251: Proc. 11th

Text Retrieval Conference (TREC 2002), 2002.

11. P.S. Heckbert and M. Garland. BFast polygonal approximation of terrains and height fields.^ Report CMU-

CS-95-181, Carnegie Mellon University, 1995.

12. J. Hershberger and S. Suri. BApplications of a semi-dynamic convex hull algorithm,^ BIT, Vol. 32:249Y267,

1992.

13. C.B. Jones, R. Purves, A. Russ, M. Sanderson, M. Sester, M.J. van Kreveld, and R. Weibel. BSpatial

information retrieval and geographical ontologiesVan overview of the spirit project,^ in Proc. 25th Annu.

Int. Conf. on Research and Development in Information Retrieval (SIGIR 2002), 387Y388, 2002.

14. G.E. Langran and T.K. Poiker. BIntegration of name selection and name placement,^ in Proc. 2nd Int.

Symp. on Spatial Data Handling, 50Y64, 1986.

15. R.R. Larson and P. Frontiera. BSpatial ranking methods for geographic information retrieval (GIR) in

digital libraries,^ Europ. Conf. on Digital Libraries, 2004.

16. M.H. Overmars. BThe Design of Dynamic Data Structured,^ volume 156 of Leture Notes Comput. Sci.

Springer-Verlag, Heidelberg, West Germany, 1983.

17. E. Rauch, M. Bukatin, and K. Baker. BA confidence-based framework for disambiguating geographic

terms,^ in A. Kornai and B. Sundheim (Eds.), HLT-NAACL 2003 Workshop: Analysis of Geographic

References, 50Y54, Edmonton, Alberta, Canada, May 31 2003. Association for Computational Linguistics.

18. R. Seidel. BConstructing higher-dimensional convex hulls at logarithmic cost per face,^ in Proc. 18th Annu.

ACM Sympos. Theory Comput., 404Y413, 1986.

19. M. van Kreveld, R. van Oostrum, and J. Snoeyink. BEfficient settlement selection for interactive display,^
in Proc. Auto-Carto 13: ACSM/ASPRS Annual Convention Technical Papers, 287Y296, 1997.

20. R. van Zwol, C. Jones, and M. van Kreveld. BAspects of spatial similatity measures.^ Report 5101 of the

SPIRIT project, 2003.

21. U. Visser, T. Vögele, and C. Schlieder. BSpatio-terminological information retrieval using the BUSTER

system,^ Proc. of the EnviroInfo, 93Y100, 2002.

22. D.E. Willard and G.S. Lueker. BAdding range restriction capability to dynamic data structures,^ J. ACM,

Vol. 32:597Y617, 1985.

Marc van Kreveld received his Ph.D. in computer science from Utrecht University in 1992. Currently he is

associate professor at the Institute of Information and Computing Sciences of Utrecht University, Center for

Geometry, Imaging and Virtual Environments. He specializes in geometric algorithms in general, and their

application to Geographic Information Systems in particular. He is principal investigator of the SPIRIT project

in Utrecht. He has written nearly a hundred papers on geometric algorithms and GIS, and is co-author of the

textbook BComputational Geometry: Algorithms and Applications.^

MULTI-DIMENSIONAL SCATTERED RANKING METHODS 83

Iris Reinbacher received a M.Sc. in Mathematics from Graz University of Technology in 2002. Since then,

she has been working towards a Ph.D. at the Center for Geometry, Imaging and Virtual Environments at Utrecht

University. She is currently working in the SPIRIT-project. Her main interest is computational geometry.

Avgerino Arampatzis received his Ph.D. in computer science from the Radboud University Nijmegen in

2001, on the topic of adaptive information filtering. He is currently employed as a postdoctoral researcher on

the SPIRIT project at the Institute of Information and Computing Sciences of Utrecht University, Center for

Geometry, Imaging and Virtual Environments. He specializes in information retrieval.

Roelof van Zwol received his engineering diploma in computer science at the University of Twente, The

Netherlands, in 1998. He then joined the database group of the University of Twente to work for his Ph.D. on

the topic of BModelling and searching Web-based document collections.^ He finished his Ph.D. in 2002. Then

he worked as a postdoc at Utrecht University on the SPIRIT project for a year. In 2003 he was appointed as an

assistant professor within the Information Science group of Utrecht University, where the main focus of his

research is on multimedia and structured document retrieval.

84 M. VAN KREVELD ET AL.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

