
Distributed Ranking Methods for Geographic
Information Retrieval ?

Marc van Kreveld, Iris Reinbacher, Avi Arampatzis, and Roelof van Zwol

Institute of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
marc@cs.uu.nl, iris@cs.uu.nl, avgerino@cs.uu.nl, roelof@cs.uu.nl

Summary. Geographic Information Retrieval is concerned with retrieving docu-
ments that are related to some location. This paper addresses the ranking of docu-
ments by both textual and spatial relevance. To this end, we introduce distributed
ranking, where similar documents are ranked spread in the list instead of consecu-
tively. The effect of this is that documents close together in the ranked list have less
redundant information. We present various ranking methods, efficient algorithms to
implement them, and experiments to show the outcome of the methods.

1 Introduction

The most common way to return a set of documents obtained from a Web
query is by a ranked list. The search engine attempts to determine which
document seems to be the most relevant to the user and will put it first in the
list. In short, every document receives a score, or distance to the query, and
the returned documents are sorted by this score or distance.

There are situations where the sorting by score may not be the most useful
one. When a more complex query is done, composed of more than one query
term or aspect, documents can also be returned with two or more scores
instead of one. This is particularly useful in geographic information retrieval
(Jones et al. 2002, Rauch et al. 2003, Visser et al. 2002). For example, the Web
search could be for castles in the neighborhood of Koblenz, and the documents
returned ideally have a score for the query term “castle” and a score for the
proximity to Koblenz. This implies that a Web document resulting from this
query can be mapped to a point in the 2-dimensional plane.

A cluster of points in this plane could be several documents about the
same castle. If this castle is in the immediate vicinity of Koblenz, all of these
documents would be ranked high, provided that they also have a high score
on the term “castle”. However, the user probably also wants documents about
other castles that may be a bit further away, especially when these documents
? This research is supported by the EU-IST Project No. IST-2001-35047 (SPIRIT).



232 Marc van Kreveld, Iris Reinbacher, Avi Arampatzis, Roelof van Zwol

are more relevant for the term “castle”. To incorporate this idea in the ranking,
we introduce distributed ranking in this paper. We present various models that
generate ranked lists that have diversity. We also present efficient algorithms
that compute the distributed rankings. To keep server load low, it is important
to have efficient algorithms.

There are several reasons to rank documents according to more than one
score. For example we could distinguish between the scores of two textual
terms, or a textual term and metadata information, or a textual term and a
spatial term, and so on. A common example of metadata for a document is
the number of hyperlinks that link to that document; a document is probably
more relevant if there are many links to it. In all of these cases we get two
scores which need to be combined for a ranking.

In traditional information retrieval, the two scores of each document would
be combined into a single score (e.g., by a weighted sum or product) which
produces the ranked list by sorting. Besides the problem that it is unclear
how the two scores should be combined, it also makes a distributed ranking
impossible. Two documents with the same combined score could be similar
documents or quite different. If two documents have two scores that are the
same, one has more reason to suspect that the documents themselves are
similar than when two documents have one (combined) score that is the same.

The topic of geographic information retrieval is studied in the SPIRIT
project (Jones et al. 2002). The idea is to build a search engine that has spa-
tial intelligence because it will understand spatial relationships like close to,
to the North of, adjacent to, and inside, for example. The core search engine
will process a user query in such a way that both the textual relevance and
the spatial relevance of a document is obtained in a score. This is possible
because the search engine will not only have a term index, but also a spatial
index. These two indices provide the two scores that are needed to obtain
a distributed ranking. The ranking study presented here will form part of
the geographic search engine to be developed for the SPIRIT project. Re-
lated research has been conducted in (Rauch et al. 2003), which focuses on
disambiguating geographic terms of a user query. The disambiguation of the
geographic location is done by combining textual information, spatial patterns
of other geographic references, relative geographic references from the docu-
ment itself, and population heuristics from a gazetteer. This gives the final
value for geoconfidence. The georelevance is composed of the geoconfidence
and the emphasis of the place name in the document. The textual relevance
of a document is computed as usual in information retrieval. Once both tex-
tual and geographic relevance are computed, they are combined by a weighted
sum.

Finding relevant information and at the same time trying to avoid redun-
dancy has so far mainly been addressed in producing summaries of one or
more documents. (Carbonell and Goldstein 1998) uses the maximal marginal
relevance (MMR), which is a linear combination of the relevance of the doc-
ument to the user query and its independence of already selected documents.



Distributed Ranking Methods for Geographic Information Retrieval 233

MMR is used for the reordering of documents. A user study has been per-
formed in which the users preferred MMR to the usual ranking of documents.
This paper contains no algorithm how to actually (efficiently) compute the
MMR. Following up on this, a Novelty Track of TREC (Harman 2002) dis-
cusses experimenting with ranking of textual documents such that every next
document has as much additional information as possible.

(Goldstein et al. 1999) proposes another scoring function for summarizing
text documents. Every sentence is assigned a score combined of the occurence
of statistical features and on the occurrence of linguistic features. They are
combined linearly with a weighting function. In (Goldstein et al. 2000), MMR
is refined and used to summarize multiple documents. Different passages or
sentences respectively are assigned a score instead of full documents.

The remainder of this paper is organized as follows. In Section 2 we present
several different ranking methods and the algorithms to compute them. In
Section 3 we show how the ranking methods behave on real-world data. In
the conclusions we mention other research and experiments that we have done
or we are planning to do.

2 Distributed Ranking Methods

In this section we will present specific ranking methods. Like in traditional
information retrieval, we want the most relevant documents to appear in the
ranking, while avoiding that documents with similar information appear close
to documents already ranked.

We will focus on the two dimensional case only, although in principle the
idea and formulas apply in higher dimensions too. We assume that a Web
query has been conducted and a number of relevant documents were found.
Each document is associated with two scores, for example a textual score and
a spatial score (which is the case in the SPIRIT search engine). The relevant
documents are mapped to points in the plane, and the query is also mapped
to a point. We perform the mapping in such a way that the query is a point
Q at the origin, and the documents are mapped to points p1, . . . , pn in the
upper right quadrant, where documents with high scores are points close to
Q. We can now formulate the two main objectives for our ranking procedure:

1. Proximity to query: Points close to the query Q are favored.
2. Spreading: Points farther away from already ranked points are favored.

A ranking that simply sorts all points in the representation plane by distance
to Q is optimal with respect to the first objective. However, it can perform
badly with respect to the second. Selecting a highly distributed subset of
points is good with respect to the second objective, but the ranked list would
contain too many documents with little relevance early in the list. We therefore
seek a compromise where both criteria are considered simultaneously. Note



234 Marc van Kreveld, Iris Reinbacher, Avi Arampatzis, Roelof van Zwol

that the use of a weighted sum to combine the two scores into one makes it
impossible to obtain a spreaded ranking.

The point with the smallest Euclidean distance to the query is considered
the most relevant document and is always first in any ranking. The remaining
points are ranked with respect to already ranked points. At any moment
during the ranking, we have a subset R ⊂ P of points that have already
been ranked, and a subset U ⊂ P of points that are not ranked yet. We
choose from U the “best” point to rank next, where “best” is determined by a
scoring function that depends on both the distance to the query Q and the set
R of ranked points. Intuitively, an unranked point has a higher added value or
relevance if it is not close to any ranked points. For every unranked point p,

Q

y

x

p1

p2

p3

p

pi

‖p‖
‖p− pi‖

φ

Fig. 1. An unranked point p amidst ranked points p1, p2, p3, pi, where p is closest
to pi by distance and by angle.

we consider only the closest point pi ∈ R, where closeness is measured either
in the Euclidean sense, or by angle with respect to the query point Q. This
is illustrated by ‖p − pi‖ and φ, respectively, in Figure 1. Using the angle to
evaluate the similarity of p and pi seems less precise than using the Euclidean
distance, but it allows more efficient algorithms, and certain extensions of
angle-based ranking methods give well-distributed results.

2.1 Distance to query and angle to ranked

Our first ranking method uses the angle measure to obtain the similarity
between an unranked point and a ranked point. In the triangle 4pQpi (see
Figure 1) consider the angle φ = φ(p, pi) and rank according to the score
S(p,R) ∈ [0, 1], which can be derived from the following normalized equation:

S(p,R) = min
pi∈R

(
2(φ(p, pi) + c)

π + 2c
·
(

1
1 + ‖p‖

)k
)

(1)



Distributed Ranking Methods for Geographic Information Retrieval 235

Here, k denotes a constant; if k < 1, the emphasis lies on the distribution, if
k > 1, we assign a bigger weight to the proximity to the query. The additive
constant 0 < c ¿ 1 ensures that all unranked points p ∈ N are assigned
an angle dependent factor greater than 0. The score S(p,R) necessarily lies
between 0 and 1, and is appropriate if we do not have a natural upper bound
on the maximum distance of unranked points to the query. If such an upper
bound was available, there are other formulas that give normalized scores.

During the ranking algorithm, we always choose the unranked point p that
has the highest S(p,R) score and rank it next. This implies an addition to
the set R, and hence, recomputation of the scores of unranked points may be
necessary. We first give a generic algorithm with a running time of O(n2).

Algorithm 1: Input: A set P with n points in the plane.

1. Rank the point r closest to the query Q first. Add it to R and delete it
from P .

2. For every unranked point p ∈ P do
a) Store with p the point r ∈ R with the samallest angle to p
b) Compute the score S(p,R) = S(p, r)

3. Determine and choose the point with the highest score S(p,R) to be next
in the ranking; add it to R and delete it from P .

4. Compute for every point p′ ∈ P the angle to the last ranked point p. If it
is smaller than the angle to the point stored with p′, then store p with p′

and update the score S(p′, R).
5. Continue with step 3 as long as there are unranked points.

The first four steps all take linear time. As we need to repeat steps 3 and 4
until all points are ranked, the overall running time of this algorithm is O(n2).
It is a simple algorithm, and can be modified to work for different score and
distance functions. In fact, it can be applied to all the ranking models that
will follow.

Theorem 1. A set of n points in the plane can be ranked according to the
distance-to-query and angle-to-ranked model in O(n2) time.

If we are only interested in the top 10 documents of the ranking, we only need
O(n) for the computation. More generally, the top t documents are determined
in O(tn) time.

2.2 Distance to query and distance to ranked

In the last section we ranked by angle to the closest ranked point. It may be
more natural to consider the Euclidean distance to the closest ranked point
instead. In the triangle 4pQpi of Figure 1, take the distance ‖p − pi‖ from
p to the closest ranked point pi and rank according to the outcome of the
following equation:

S(p,R) = min
pi∈R

(‖p− pi‖
‖p‖2

)
(2)



236 Marc van Kreveld, Iris Reinbacher, Avi Arampatzis, Roelof van Zwol

The denominator needs a squaring of ‖p‖ (or another power > 1) to assure
that documents far from Q do not end up too early in the ranking, which would
conflict with the proximity to query requirement. A normalized equation such
that S(p,R) ∈ [0, 1] is the following:

S(p,R) = min
pi∈R

(
(1− e−λ·‖p−pi‖) · 1

1 + ‖p‖
)

(3)

Here, λ is a constant that defines the slope of the exponential function. Algo-
rithm 1 can be modified to work here as well with a running time of O(n2).

Theorem 2. A set of n points in the plane can be ranked according to the
distance-to-query and distance-to-ranked model in O(n2) time.

2.3 Addition models

So far, our distributed methods were all based on a formula that divided
angle or distance to the closest ranked point by the distance to the query. In
this way, points closer to the query get a higher relevance. We can obtain a
similar effect but a different ranking by adding up these values. It is not clear
beforehand which model will be more satisfactory for users, so we analyze
these models as well.

S(p,R) = min
pi∈R

(
α · (1− e−λ·(‖p‖/‖pmax‖)) + (1− α) · φ(p, pi) · 2

π

)
(4)

In this equation, pmax is the point with maximum distance to the query, α ∈
[0, 1] denotes a variable which is used to put an emphasis on either distance or
angle, and λ is a constant that defines the base eλ of the exponential function.
Algorithm 1 can be modified for the addition models, but as the angle φ(p, pi)
is an additive and not a multiplicative part of the score equation, we can give
algorithms with better running time.

The point set is initially stored in the leaves of a binary tree T , sorted by
counterclockwise (ccw) angle to the y-axis. In every leaf of the tree we also
store: (i) ccw and clockwise (cw) angle to y and x-axis respectively; (ii) the
distance to the query; (iii) ccw and cw score. We augment T as follows (see
e.g. (Cormen et al. 1990) for augmenting data structures): In every internal
node we store the best cw and ccw score per subtree. Later in the algorithm,
we additionaly store the angle of the closest ccw and cw ranked point and
whether the closest ranked point is in cw or ccw direction in the root of each
subtree. Furthermore, we store the best score per tree in a heap for quicker
localization. As shown left in Figure 2, between two already ranked points p1

and p2, indicated by `1 and `2, there are two binary trees, T1 cw and T2 ccw
of the bisecting barrier line `12. All the points in T1 are closer in angle to p1

and all the points in T2 are closer in angle to p2. If we insert a new point p3

to the ranking, this means we insert a new imaginary line `3 through p3 and
we need to perform the following operations on the trees:



Distributed Ranking Methods for Geographic Information Retrieval 237

`1

`2

`3

p1

p2 p3

`2

T ′
ccw

T ′′
ccw

T ′
cw

T ′′
cw

`12

`32

`13

`12
`32`32

`1

T1

T2

T3

T0

Fig. 2. The split and concatenate of trees in Algorithm 2.

1. Split T1 and T2 at the angle-bisectors `32 and `13, creating the new trees
T ′

cw and T ′
ccw and two intermediate trees T cw and T ccw

2. Concatenate the intermediate trees from (1), creating one tree T .
3. Split T at the newly ranked point p3, creating T ′′

cw and T ′′
ccw.

Figure 2 right, shows the outcome of these operations. Whenever we split or
concatenate the binary trees we need to make sure that the augmentation
remains correct. In our case, this is no problem, as we only store the best
initial scores in the inner leaves. However, we need to update the information
in the root of each tree about the closest cw and ccw ranked point and the
best scores. As the scores are additive, and all scores for points in the same
tree are calculated with respect to the same ranked point, we simply subtract
(1 − α) · φ′ · 2/π, where φ′ denotes the cw(ccw) angle of the closest ranked
point, from the cw (ccw) best score to get the new best score for the tree. We
also need to update the score information in the heap. Now we can formulate
an algorithm for the addition-model that runs in O(n log n) time.

Algorithm 2: Input: A set P with n points in the plane.

1. Create T with all points of P , the augmentation and a heap that contains
only the point p closest to the query Q.

2. Choose the point p with the highest score S(p,R) as next in the ranking
by deleting the best one from the heap.

3. For every last ranked point p do:
a) Split and concatenate the binary trees as described above and update

the information in their roots.
b) Update the best-score information in the heap:

i. Delete the best score of the old tree T1 or T2 that did not contain p.
ii. Find the four best scores of the new trees T ′

cw, T ′
ccw, T ′′

cw, and T ′′
ccw

and insert them in the heap.
4. Continue with step 2.

Theorem 3. A set of n points in the plane can be ranked according to the
angle-distance addition model in O(n log n) time.

Another, similar, addition model adds up the distance to the query and the
distance to the closest ranked point:



238 Marc van Kreveld, Iris Reinbacher, Avi Arampatzis, Roelof van Zwol

S(p,R) = min
pi∈R

(
α · (1− e−λ1·(‖p‖/‖pmax‖)) + (1− α)(1− e−λ2·‖p−pi‖)

)
(5)

Again, pmax is the point with maximum distance to the query, α ∈ [0, 1]
is a variable used to influence the weight given to the distance to the query
(proximity to query) or to the distance to the closest point in the ranking (high
spreading), and λ1 and λ2 are constants that define the base of the exponential
function. Note that Algorithm 2 is not applicable for this addition model. This
is easy to see, since the distance to the closest ranked point does not change
by the same amount for a group of points. This implies that the score for every
unranked point needs to be adjusted individually when adding a point to R.
We can modify Algorithm 1 for this addition model. Alternatively, we can use
the following algorithm that has O(n2) running time in the worst case, but a
typical running time of O(n log n).

Algorithm 3: Input: A set P with n points in the plane.

1. Rank the point p closest to the query Q first. Add it to R and delete it
from P . Initialize a list with all unranked points.

2. For every newly ranked point p ∈ R do:
a) Insert it to the Voronoi diagram of R.
b) Create for the newly created Voronoi cell a list of unranked points

that lie in it by taking those points that have p as closest ranked from
the lists of the neighboring cells. For all R′ ⊆ R Voronoi cells that
changed, update their lists of unranked points.

c) Compute the point with the best score for the newly created Voronoi
cell and insert it in a heap H. For all R′ ⊆ R Voronoi cells that
changed, recompute the best score and update the heap H accordingly.

3. Choose the point with the best overall score from the heap H as next in
the ranking; add it to R and delete it from P and H.

4. Continue with step 2.

Since the average degree of a Voronoi cell is six, one can expect that a typical
addition of a point p to the ranked points involves a set R′ with six ranked
points. If we also assume that, typically, a point in R′ loses a constant fraction
of the unranked points in its list, we can prove an O(n log n) time bound for
the whole ranking algorithm. The analysis is the same as in (Heckbert and
Garland 1995, van Kreveld et al. 1997). The algorithm can be applied to all
ranking methods described so far.

Theorem 4. A set of n points in the plane can be ranked by the distance-
distance addition model in O(n2) worst case and O(n log n) typical time.

3 Experiments

We implemented the generic ranking Algorithm 1 for the basic ranking meth-
ods described in Subsections 2.1, 2.2, and 2.3. Furthermore we implemented



Distributed Ranking Methods for Geographic Information Retrieval 239

10

20

30

40

50

0

55

10 20 30 40 50 55

1

2

3 4

5
6

7

8

9

10

11

12

13

14

15

16

17
18

19 20

10

20

30

40

50

0

55

10 20 30 40 50 55

1

2

3

4
5

6

7

8

9

10
11

12

13

14

15

Fig. 3. Ranking by distance to origin only.

an extension called staircase enforcement, explained in Subsection 3.2. We
compare the outcomes of these algorithms for two different point sets shown
in Figure 3. The point set at the left consists of 20 uniformly distributed
points, the point set at the right shows the 15 most relevant points for the
query ‘safari africa’ which was performed on a dataset consisting of 6,500
Lonely Planet web pages. The small size of the point sets was chosen out of
readability considerations.

3.1 Basic ranking algorithms

Figure 3 shows the output of a ranking by distance-to-query only. It will
function as a reference point for the other rankings. Points close together
in space are also close in the ranking. In the other ranking methods, see
Figure 4, this is not the case anymore. This is visible in the ‘breaking up’ of
the cluster of four points in the upper left corner of the Lonely Planet point set
rankings. Note also that the points ranked last by the simple distance ranking
are always ranked earlier by the other methods. This is because we enforced
higher spreading over proximity to the query by the choice of parameters. The
rankings are severely influenced by this choice. In our choice of parameters we
did not attempt to obtain a “best” ranking. We used the same parameters in
all three ranking methods to simplify qualitative comparison.

3.2 Staircase enforced ranking algorithms

In the staircase enforced methods, shown in Figure 5, the candidates to be
ranked next are only those points that lie on the (lower left) staircase of the
point set. The scoring functions are as before. A point p is on the staircase
of a point set P if and only if for all p′ ∈ P \ {p}, we have px < p′x or py <
p′y. So, with this limitation, proximity to the query gets a somewhat higher



240 Marc van Kreveld, Iris Reinbacher, Avi Arampatzis, Roelof van Zwol

10

20

30

40

50

0

55

10 20 30 40 50 55

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

1920

10

20

30

40

50

0

55

10 20 30 40 50 55

1

2

3

4

5

6

7
8

9
10

11

12

13

14

15

10

20

30

40

50

0

55

10 20 30 40 50 55

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

10

20

30

40

50

0

55

10 20 30 40 50 55

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

10

20

30

40

50

0

55

10 20 30 40 50 55

1 2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

10

20

30

40

50

0

55

10 20 30 40 50 55

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 4. Top: Ranking by distance to origin and angle to closest (k = 1, c = 0.1).
Middle: Ranking by distance to origin and distance to closest (Equation 3, λ = 0.05).
Bottom: Ranking by additive distance to origin and angle to closest (α = 0.4,
λ = 0.05).



Distributed Ranking Methods for Geographic Information Retrieval 241

10

20

30

40

50

0

55

10 20 30 40 50 55

1

2

3

4 5

6

7

8

9

10

11

12

13 14

15
16

17

18

1920

10

20

30

40

50

0

55

10 20 30 40 50 55

1

2

3

4

5

6

7

8 9

10

11

12
13

14

15

10

20

30

40

50

0

55

10 20 30 40 50 55

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

10

20

30

40

50

0

55

10 20 30 40 50 55

1 2

3

4

5

6

7 8

9

10

11
12

13

14

15

10

20

30

40

50

0

55

10 20 30 40 50 55

1 2

3

4

5

67

8 9

10
11

12 13

14

15
16

17

18

1920

10

20

30

40

50

0

55

10 20 30 40 50 55

1 2

3

4

5

6

7

8 9

10

11

12
13

14

15

Fig. 5. Same as Figure 4, but now staircase enforced.



242 Marc van Kreveld, Iris Reinbacher, Avi Arampatzis, Roelof van Zwol

importance compared to the basic algorithms, which is clearly visible in the
figures, as the points farthest away from the query are almost always ranked
last. It appears that staircase enforced methods perform better on distance to
query while keeping a good distribution. The staircase enforced rankings can
be implemented efficiently by adapting the algorithms we presented before.

4 Conclusions

This paper introduced distributed relevance ranking for documents that have
two scores. It is particularly useful for geographic information retrieval, where
documents have both a textual and a spatial score. The concept can easily
be extended to more than two scores, although it is not clear how to obtain
efficient algorithms that run in subquadratic time. The experiments indicate
that both requirements for a good ranking, distance to query and spreading,
can be obtained simultaneously. Especially the staircase enforced methods
seem to perform well. User evaluation is needed to discover which ranking
method is preferred most, and which parameters should be used.

We have examined more extensions and performed more experiments than
were reported in this paper. For example, we also analyzed the case where the
unranked points are only related to the 10 (or any number of) most recently
ranked points, to guarantee that similar points are sufficiently far apart in the
ranked list. Also for this variation, user evaluation is needed to determine the
most preferred methods of ranking.

References

Carbonell, J.G., and Goldstein, J., 1998. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Research
and Development in Information Retrieval, pages 335–336.

Cormen, T.H., Leiserson, C.E., and Rivest, R.L., 1990. Introduction to Algo-
rithms. MIT Press, Cambridge, MA.

Goldstein, J., Kantrowitz, M., Mittal, V.O., and Carbonell, J.G., 1999. Sum-
marizing text documents: Sentence selection and evaluation metrics. In
Research and Development in Information Retrieval, pages 121–128.

Goldstein, J., Mittal, V.O., Carbonell, J.G., and Callan, J.P., 2000. Creat-
ing and evaluating multi-document sentence extract summaries. In Proc.
CIKM, pages 165–172.

Harman, D., 2002. Overview of the TREC 2002 novelty track. In NISI Special
Publication 500-251: Proc. 11th Text Retrieval Conference (TREC 2002).

Heckbert, P.S., and Garland, M., 1995. Fast polygonal approximation of ter-
rains and height fields. Report CMU-CS-95-181, Carnegie Mellon Univer-
sity.

Jones, C.B., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld,
M.J., and Weibel, R., 2002. Spatial information retrieval and geographi-



Distributed Ranking Methods for Geographic Information Retrieval 243

cal ontologies – an overview of the SPIRIT project. In Proc. 25th Annu.
Int. Conf. on Research and Development in Information Retrieval (SIGIR
2002), pages 387–388.

Rauch, E., Bukatin, M., and Naker, K., 2003. A confidence-based framework
for disambiguating geographic terms. In Proc. Workshop on the Analysis
of Geographic References.
http://www.metacarta.com/kornai/NAACL/WS9/Conf/ws917.pdf.

van Kreveld, M., van Oostrum, R., and Snoeyink, J., 1997. Efficient settlement
selection for interactive display. In Proc. Auto-Carto 13: ACSM/ASPRS
Annual Convention Technical Papers, pages 287–296.

Visser, U., Vögele, T., and Schlieder, C., 2002. Spatio-terminological infor-
mation retrieval using the BUSTER system. In Proc. of the EnviroInfo,
pages 93–100.


