
A Cost-Benefit Analysis of Indexing Big Data
with Map-Reduce

Dimitrios Siafarikas Argyrios Samourkasidis Avi Arampatzis

Department of Electrical and Computer Engineering

Democritus University of Thrace
University Campus, Kimmeria, Xanthi 67100, Greece

dimitris.siafarikas@hotmail.com, argysamo@gmail.com, avi@ee.duth.gr

Abstract—We reflect upon the challenge a Big Data analyst faces
when dealing with the complex problem of considering the
approximate amount of nodes needed for a computation to be
completed within a given time. We develop a formula which
allows anyone, with the job of designing clusters for massive data
sets, to do so. We consider the problem of Inverted Index
construction which is widely used in Information Retrieval. We
present the various aspects and the challenges of this problem
along with details on how the system we developed works.

Keywords: Information Retrieval, Big Data, Data Mining,
Cluster, Inverted Index, Hadoop, Map-Reduce

I. INTRODUCTION

Conventional databases systems have proved their
usefulness throughout the years because of their great potential
as systems that provide an organized and structured place for
data. The new era of information technology, however,
requires advanced analytic capabilities.

Difficulties in scalability have emerged during the recent
years. Companies like Facebook and Google are capable of
creating Gigabytes of data per second. These enormous
amounts of datasets spawn various problems and set challenges
for the community. The challenges include capture, curation,
storage, search, sharing, transfer, analysis and visualization of
the so-called Big Data [2]. Big Data refers to a collection of
data that is so large and complex, it becomes difficult to
process using traditional database management tools or data
processing applications. Another example to grasp the size of
Big Data is the volume of data that is produced from the Large
Hadron Collider (LHC) experiments at CERN. By 2012, more
than 300 trillion collisions had been analyzed. The project
generated approximately 27 Terabytes of raw data per day and
25 Petabytes per year.

Currently, the most popular operational approach to Big
Data storage and processing is Horizontal Scalability, that is
the ability to connect multiple hardware and software entities
so that they work as a single logical unit. One of the popular
such frameworks is Apache's Hadoop [3] which implements
the Map-Reduce programming model [10].

In this paper, we purpose a way of building an Inverted
Index using the Map-Reduce programming model. Firstly, we

program an algorithm in Python in order to comprehend and
grasp the idea of Inverted Indices. Then, we modify the
algorithm to work on the Map-Reduce programming
framework. Hadoop uses Java as the default programming
language. Besides that, there is a library, called Hadoop
Streaming that allows to develop algorithms in any
programming language. This provides an environment for
rapid algorithm development in any language the user likes.

The rest of this paper is organized as follows. Next we

elaborate on inverted indices and how these are classically
built. In Section III we give a short introduction to the Map-
Reduce programming framework. Section IV presents our
proposed implementation of inverted index construction using
Map-Reduce. In Section V we attempt a cost-benefit analysis
of our proposed implementation in comparison to the classical
serially-implemented approach. Conclusions and directions for
further research are summarized in Section VI.

II. INVERTED INDEX

A. Information Retrieval
Information retrieval is the activity of obtaining

information relevant to an information need from a collection
of information resources [7]. Searches can be based on
metadata or on full-text (or other content-based) indexing. An
information retrieval process begins when a user enters a
query into the system. Queries are formal statements of
information needs, for example search strings in web search
engines. In information retrieval a query does not uniquely
identify a single object in the collection. Instead, several
objects may match the query, perhaps with different degrees
of relevancy. For effectively retrieving relevant documents,
the documents are typically transformed into a suitable
representation. One of those is the inverted index, which we
elaborate on next.

B. Inverted Index
An inverted index is a data structure storing a mapping

from content (such as words) to its location in a database file

or in a document or in a set of documents. The purpose of an
inverted index is to allow fast full-text searches, at a cost of
increased processing when a document is added to the
database. It is the most popular data structure used in
document retrieval systems.

C. Building an Inverted Index

To gain the speed benefits of indexing at retrieval time, we
have to build the index in advance. The major steps in this are
[7]:

1) Collect the documents to be indexed.

2) Tokenize the text, turning each document into a list of
tokens.

3) Do linguistic preprocessing (e.g. stemming or

lemmatization), producing a list of normalized tokens, which
are the indexing terms.

4) Index the documents that each term occurs in by

creating an inverted index, consisting of a dictionary and
postings.

The procedure is depicted in Figure 1.

 Figure 1. Postings are lists of DocIDs

III. MAP-REDUCE

Map-Reduce is a programming model for processing large
datasets with a parallel, distributed algorithm on a cluster. The
most popular open-source implementation is Apache’s Hadoop
cluster system [3]. A Map-Reduce program mainly consists of
two functions: a Map function and a Reduce function. In fact
the only thing one has to do is write those two functions, while
the system manages the parallel execution in a fault-tolerant
way, meaning that it also deals with the possibility of failures

on nodes’ hardware or network’s infrastructure upon execution.
The tasks that process those functions are called Map Task and
Reduce Task, respectively.

Hadoop is actively collaborated with Hadoop Distributed
File System (HDFS), a distributed file system specifically
designed to store massive datasets distributed along multiple
servers on a cluster. HDFS is based on the Google File System
[4]. HDFS is highly fault-tolerant and can be deployed on low-
cost hardware. Specifically, small portions, called chunks, of
the data are spread across different nodes and maybe different
racks of a cluster. Each of those chunks is replicated among the
nodes at a factor of 3, by default. In the event of a single node
failure, no data are lost; there are two other copies of those
chunks at a different node. The system then perceives that a
node is down and then replicates to another node the data to
match the replication factor of three. The administrator can
increase this factor to get a more redundant deployment.

A. Map Tasks

The input files for the Map task can be any type; a tuple or
a document for example. These inputs are called elements. A
chunk is a collection of elements and no element is stored
across two chunks. The Map task takes an element as an input
argument and as an output produces a number of key-value
pairs. The output of the task could be zero pairs, too. Keys do
not have to be unique. A Map task can produce several key-
value pairs with the same key, even from the same input
element.

Summarizing, the Map function takes a series of key-value
pairs, processes each, and generates zero or more output key-
value pairs. The input and output types of the map can be (and
often are) different from each other. For example, if the
application is doing a word count, the map function would
break the line into words and output a key/value pair for each
word. Each output pair would contain the word as the key and
the number of instances of that word in the line as the value.

B. Reduce Tasks
The framework calls the application's Reduce function

once for each unique key in the sorted order. The Reduce
function takes as an input a pair of a key and its list of
associated values. The output of the Reduce function is a
sequence of zero or more key-value pairs. These key-value
pairs can be of any type from those sent from Map tasks but it
is usually the same type. A Reduce task receives one or more
keys and their associated value lists. The output of all the
Reduce tasks are merged into a single file. In the word count
example, the Reduce function takes the input values, sums
them and generates a single output of the word and the final
sum.

C. Execution
In brief, a map-reduce job is executed as follows:

1) A number of Map tasks are assigned to one or more
chunks of data from the distributed file system. These chunks
are converted to a sequence of key-value pairs. The way the
pairs are produced is up to the developer of the Map function.

2) The key-value pairs that come out of the Map tasks are

then collected by a master controller and sorted by key. Then,
each batch of key-value pairs with the same key, is given to a
Reduce task.

3) The Reduce tasks then, combine all the values
associated with that key in some way determined by the
developer of the Reduce function.

The execution flow is showed in Figure 2.

Figure 2. Execution Diagram

IV. BUILDING A NON-POSITIONAL INVERTED INDEX WITH
MAP-REDUCE

A. Map function
In our implementation, we feed each Map task with one

line of data at a time. Specifically, each word of the line that is
separated with a space, is transformed to a new string in the
format “word \t DocId”, where \t is the Tab character and
DocID is the name of the file that this particular word was
found in. Also the Map function eliminates all unnecessary
characters, like “!@#$%^&*” etc., for the purposes of the
Inverted Index.

B. Combiners
Without any combiners, the output of the Map tasks input

directly to the Reduce tasks. Because of the Map functions
taking as an input more than one line, coming from multiple
files, we are able to reduce the amount of data that have to be
transferred across nodes of the network. This is done as

follows. When the same word appears in more than one line,
then the Combiner function combines the result to the string
with the format:

word \t DocId1:WordFreq1 DocId2:WordFreq2 …

where DocFreq, the occurrence frequency of the particular
word. To sum up, the Combiner scans for identical words
coming from the same Map task.

C. Reduce function
The output of each Combiner constitutes a small subset of

the final Inverted Index. Therefore, our goal is to aggregate all
those subsets to a final set. So, this function takes as an input
the combined data and as an output, makes a final record i.e.
the final Inverted Index. The format of the output is the
following:

Word \t DocID1:WordFreq1 | DocID2:WordFreq2 | …

Figure 3 summarizes the whole procedure of building an

Inverted Index in Map-Reduce.

Figure 3. Data Flow

V. COST ANALYSIS

In this section, we attempt to come up with a formula that
estimates the total amount of time needed for an indexing job
to complete on a cluster of nodes. For the sake of simplicity, a
few assumptions must be made first, otherwise the problem
becomes too complex and difficult to handle.

First of all, we assume that each computing node has one
central processing unit (CPU). All the nodes are connected to
the same switch in order to avoid further calculations
regarding connections via different routers and switches. Also,
each node spawns one Map task and the total number of
Reduce tasks is less than then number of total Map tasks.
Furthermore, we do not take into account the size of the main
memory on each node. This size could make a huge difference
on the amount of time needed for a job to execute. That is
because, the more data are stored in the main memory
(multiple times faster than secondary memory), the less data
are requested from the secondary (slow) drive. Hence the
execution is faster.

For our scenario, we assume having at our disposal:

 A single computer, that is able to build an
Inverted Index for the whole dataset. This can be
seen as equivalent to executing one Map
followed by one Reduce (at least the
functionality of those) in a single node. The total
time needed to complete is tS . In particular, the
equivalent of the Map function should take tM,
and the equivalent of the Reduce function should
complete in time tR. Namely:

 tS = tM + tR

Since, in our implementation, Combiners essentially do the
same processing as Reducers, we can safely assume that this
processing is all done in either of the two, in this case, in the
Reducer.

 A cluster that consists of m nodes with the
aforementioned configuration. m and r
correspond to the total number of Map and
Reduce tasks, respectively.

 The data at each node is read and processed serially.
The dataset is considered already stored in a single disk in the
single node setup, and in HDFS in the multi-node setup. We
would like to estimate the total amount of time needed to
complete a job, given the time needed for a single node to run
the same job, ts, and the number of nodes, m, present in the
cluster.

 During execution, the Hadoop framework breaks the
whole dataset in smaller portions of data. Each portion is
assigned to a Map node and is being processed. All the Map
tasks (one per node) are executed in parallel, hence the total
time for Map tasks to complete equals to the execution time of
one Map task. The amount of the parallel execution of the
Map tasks is	

	

Upon completion of each Map task, the output
becomes an input for the Combiner that is associated with the
Map on the same node. As we said earlier, we use Combiners
to reduce the data transferred across the network. For the
purpose of our scenario we consider the processing time of the
Combiners as negligible; as we said earlier, it is some amount
of processing that has to be done in either the Combiner or the
Reducer, and we can assume we load it up to the Reducer.
What makes a huge difference is the amount of data that have
to be transferred over the network from the Map tasks to the
Reduce tasks, and here is where Combiners come into play.

 The output of each Map task has to be transferred to
the Reduce tasks. Next we try to get a rough estimate of the
amount of data per chunk, K, that have to be transferred over
the network with and without Combiners. We can assume that
for a large number of Mappers it is safe to consider that almost
all data coming out of each Map will have to get to a Reducer
somewhere else on the net.

 Let us assume that each chunk has the default size of
64Mbytes. We take the length of the average English word as
5.1 characters [5]. We should at least add spaces between
words. Therefore, the length equals to 5.1+ 1 = 6.1 bytes per
word. Also, we presume what we have pure text (no html or
other mark-up in between) and the text is in 8-bit ASCII, too.
So, if we divide the chunk size with the average size per word,
we get around 11,001,453 non-unique words per chunk.

 Without Combiners we have to transfer “Word \t
DocId” approximately 11 million times. Specifically, Word is
around 5.1 bytes, the tab character is 1 byte and the DocID
takes 4 bytes assuming it is a Long Integer. Thus, the length
per string is 10.1 bytes, and the total transfer is K=105.97
Mbytes per chunk.

 With Combiners we need to transfer “Word \t
DocID1:WordFreq1 | DocID2:WordFreq2 …” per unique
word in a chunk. Word is again 5.1 bytes. Each posting is 10
bytes, assuming 4 bytes for docIDs and 4 for frequency (both
Long Integers) plus 2 bytes for the delimiters (`\t' and `:' for
the first posting and `|' and `:' for all the others.) To complete
the calculation, we need to estimate the number of unique
words per chunk and the average number of postings per
unique word.

We assume that no stop-list, stemmer or any other
pre-processing that reduces the length or the number of
words/tokens are used.

 In linguistics, the number of unique words, N, in a
text as a function of text length (in words) is given by the
empirical law of Heaps [8]. According to Heaps’ Law and
assuming beta=0.5 (a widely-known empirically found value),
k=31.6 (we take the middle of the logarithmic range [10,100]
using a base of 10---this is the suggested range for k in the
literature, for English text) and n=11,001,453, we estimate
N=104,812 unique words per chunk.

Zipf's law states that given some corpus of natural language
utterances, the frequency of any word is inversely proportional
to its rank in the frequency table [9], i.e. the distribution of
frequencies follows a power-law with an exponent of 1. It is
also known that the distribution of document frequencies (DF,
i.e. the number of documents a word occurs in) also follows a
power-law, albeit with a higher exponent (steeper curve).
Empirical data show that the exponent is around s=2 [11].
This means that the ith largest DF is

	

, where c is some constant. The average document length
is around 1,000,000 characters [5], i.e. 0.95367 Mbytes. So,
we have 64 Mbytes/0.95367 Mbytes = 67.11 documents per
chunk. We assume that the most common word (i=1) appears
in all chunk's documents, so c must be 67.11. Now the average
DF is

 Thus, empirical laws produce a very small number

meaning that each unique word has almost zero postings;
empirically the average is just above 1, which makes sense
since most unique words occur in a single document.

 Consequently, with Combiners, we have to transfer
104,812 unique words of 6.1 bytes each associated on average
with 1 posting of 10 bytes, that is K=1.61 Mbytes in total per
chunk. Thus, using Combiners reduces the network load by an
impressive 98.5%.

 At first sight, we see that the data transferred for a
single chunk, when we do not use the Combiner, is around
twice the size of data without the use of it. The benefit comes
when we take into account the number of the unique and the
non-unique words in a chunk. As we calculated earlier, the
total data need to be transferred when we use Combiners is K
= 1.61 Mbytes = 0.00157 Gbytes = 0.01256 Gigabits.

 To sum up, the total data that need to be transferred
are:

Now, even if we interconnect the nodes with an

Ethernet network of one Gigabit per second, the amount of
time needed to move the data across the nodes is significantly
more than the time needed to process the same data. This
equals to:

As with the case of the Map tasks, the time needed
for all the parallel Reduce tasks to complete is:

 	

To determine the total time for completion of the
cluster job, we use the following equation:

The above equation could be an asset on the process

of determining the approximate number of nodes of a cluster,
given the execution time on a single node that processes the
data serially.

We have to underline here, the tradeoff for the

benefits of parallelization, is the big communication cost
between the nodes.

I. CONCLUSIONS

Map-Reduce is the state of the art for processing Big Data

sets. Indexing is a parallelizable problem, so that Map-Reduce
is an ideal framework for information retrieval. Since
parallelization comes with an amount of overhead, it is crucial
to specify when the Big Data are "big" enough in order to use
a cluster for the process. Equally important is to be able to
determine the approximate number of nodes that consist a
cluster, in order to process Big Data at a given time.

REFERENCES

[1] Anand Rajaraman and Jeffrey David Ullman, “Mining of Massive

Datasets”, Cambridge University Press, 2011.
[2] Wikipedia, the free encyclopedia, “Big Data”, [Online]. Available:

http://en.wikipedia.org/wiki/Bigdataw
[3] Wikipedia, the free encyclopedia, “Apache Hadoop”, [Online].

Available: http://en.wikipedia.org/wiki/Apache_Hadoop
[4] Sanjay Ghemawat, Howard Gobioff and Shunk-Tak Leung, “The

Google File System”, Proceedings of the 19th ACM Symposium on
Operating Systems Pinciples 2003 (SOSP 2003), Bolton Landing, NY,
USA, October 19-22, 2003.

[5] Wolfram Alpha, computational knowledge engine, “Average English
word length [Online]. Available:
http://www.wolframalpha.com/input/?i=average+english+word+length.

[6] Tom White, “Hadoop: The definitive guide” 2nd editions, O’Reilly
[7] Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze,

“Introduction to Information Retrieval”, Cambridge University Press,
2008.

[8] Heaps, Harold Stanley, “Information Retrieval: Computational and
Theoretical Aspects”, Academic Press, 1978. Section 7.5, pp. 206-208.

[9] Wentian Li, “Random Texts Exhibit Zipf’s-Law-Like Word Frequency
Distribution”, IEEE Transactions on Information Theory 38 (6): 1842-
1845. Doi:10.1109/18.165464. 1992

[10] Jeffrey Dean, Sanjay Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters”, 6th Symposium on Operating System
Design and Implementation (OSDI 2004), San Francisco, California,
December 6-8, 2004.

[11] Jimmy Lin. “The Curse of Zipf and Limits to Parallelization: A Look at
the Stragglers Problem in MapReduce” , Proceedings of the 7 th
Workshop on Large-Scale Distributed Systems for Information Retrieval
(LSDS-IR’09) at SIGIR 2009, July 2009, Boston, Massachusetts.

