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Abstract—We reflect upon the challenge a Big Data analyst faces 
when dealing with the complex problem of considering the 
approximate amount of nodes needed for a computation to be 
completed within a given time. We develop a formula which 
allows anyone, with the job of designing clusters for massive data 
sets, to do so. We consider the problem of Inverted Index 
construction which is widely used in Information Retrieval. We 
present the various aspects and the challenges of this problem 
along with details on how the system we developed works. 
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I.  INTRODUCTION 

Conventional databases systems have proved their 
usefulness throughout the years because of their great potential 
as systems that provide an organized and structured place for 
data. The new era of information technology, however, 
requires advanced analytic capabilities. 

Difficulties in scalability have emerged during the recent 
years. Companies like Facebook and Google are capable of 
creating Gigabytes of data per second. These enormous 
amounts of datasets spawn various problems and set challenges 
for the community. The challenges include capture, curation, 
storage, search, sharing, transfer, analysis and visualization of 
the so-called Big Data [2]. Big Data refers to a collection of 
data that is so large and complex, it becomes difficult to 
process using traditional database management tools or data 
processing applications. Another example to grasp the size of 
Big Data is the volume of data that is produced from the Large 
Hadron Collider (LHC) experiments at CERN. By 2012, more 
than 300 trillion collisions had been analyzed. The project 
generated approximately 27 Terabytes of raw data per day and 
25 Petabytes per year.  

Currently, the most popular operational approach to Big 
Data storage and processing is Horizontal Scalability, that is 
the ability to connect multiple hardware and software entities 
so that they work as a single logical unit. One of the popular 
such frameworks is Apache's Hadoop [3] which implements 
the Map-Reduce programming model [10].  

In this paper, we purpose a way of building an Inverted 
Index using the Map-Reduce programming model. Firstly, we 

program an algorithm in Python in order to comprehend and 
grasp the idea of Inverted Indices. Then, we modify the 
algorithm to work on the Map-Reduce programming 
framework. Hadoop uses Java as the default programming 
language. Besides that, there is a library, called Hadoop 
Streaming that allows to develop algorithms in any 
programming language. This provides an environment for 
rapid algorithm development in any language the user likes. 

 
The rest of this paper is organized as follows. Next we 

elaborate on inverted indices and how these are classically 
built. In Section III we give a short introduction to the Map-
Reduce programming framework. Section IV presents our 
proposed implementation of inverted index construction using 
Map-Reduce. In Section V we attempt a cost-benefit analysis 
of our proposed implementation in comparison to the classical 
serially-implemented approach. Conclusions and directions for 
further research are summarized in Section VI.  

 

II. INVERTED INDEX 

A. Information Retrieval 
Information retrieval is the activity of obtaining 

information relevant to an information need from a collection 
of information resources [7]. Searches can be based on 
metadata or on full-text (or other content-based) indexing. An 
information retrieval process begins when a user enters a 
query into the system. Queries are formal statements of 
information needs, for example search strings in web search 
engines. In information retrieval a query does not uniquely 
identify a single object in the collection. Instead, several 
objects may match the query, perhaps with different degrees 
of relevancy. For effectively retrieving relevant documents, 
the documents are typically transformed into a suitable 
representation. One of those is the inverted index, which we 
elaborate on next.  
 

B. Inverted Index  
An inverted index is a data structure storing a mapping 

from content (such as words) to its location in a database file 



or in a document or in a set of documents. The purpose of an 
inverted index is to allow fast full-text searches, at a cost of 
increased processing when a document is added to the 
database. It is the most popular data structure used in 
document retrieval systems. 

 

C. Building an Inverted Index 

To gain the speed benefits of indexing at retrieval time, we 
have to build the index in advance. The major steps in this are 
[7]: 

1) Collect the documents to be indexed. 
 

2) Tokenize the text, turning each document into a list of 
tokens. 

 
3) Do linguistic preprocessing (e.g. stemming or 

lemmatization), producing a list of normalized tokens, which 
are the indexing terms. 

 
4) Index the documents that each term occurs in by 

creating an inverted index, consisting of a dictionary and 
postings. 
 
The procedure is depicted in Figure 1.  

 
          Figure 1. Postings are lists of DocIDs 

III. MAP-REDUCE 

Map-Reduce is a programming model for processing large 
datasets with a parallel, distributed algorithm on a cluster. The 
most popular open-source implementation is Apache’s Hadoop 
cluster system [3]. A Map-Reduce program mainly consists of 
two functions: a Map function and a Reduce function. In fact 
the only thing one has to do is write those two functions, while 
the system manages the parallel execution in a fault-tolerant 
way, meaning that it also deals with the possibility of failures 

on nodes’ hardware or network’s infrastructure upon execution. 
The tasks that process those functions are called Map Task and 
Reduce Task, respectively.  

Hadoop is actively collaborated with Hadoop Distributed 
File System (HDFS), a distributed file system specifically 
designed to store massive datasets distributed along multiple 
servers on a cluster. HDFS is based on the Google File System 
[4]. HDFS is highly fault-tolerant and can be deployed on low-
cost hardware. Specifically, small portions, called chunks, of 
the data are spread across different nodes and maybe different 
racks of a cluster. Each of those chunks is replicated among the 
nodes at a factor of 3, by default. In the event of a single node 
failure, no data are lost; there are two other copies of those 
chunks at a different node. The system then perceives that a 
node is down and then replicates to another node the data to 
match the replication factor of three. The administrator can 
increase this factor to get a more redundant deployment. 

 

A. Map Tasks 

The input files for the Map task can be any type; a tuple or 
a document for example. These inputs are called elements. A 
chunk is a collection of elements and no element is stored 
across two chunks. The Map task takes an element as an input 
argument and as an output produces a number of key-value 
pairs. The output of the task could be zero pairs, too. Keys do 
not have to be unique. A Map task can produce several key-
value pairs with the same key, even from the same input 
element.  

Summarizing, the Map function takes a series of key-value 
pairs, processes each, and generates zero or more output key-
value pairs. The input and output types of the map can be (and 
often are) different from each other. For example, if the 
application is doing a word count, the map function would 
break the line into words and output a key/value pair for each 
word. Each output pair would contain the word as the key and 
the number of instances of that word in the line as the value.  

B. Reduce Tasks 
The framework calls the application's Reduce function 

once for each unique key in the sorted order. The Reduce 
function takes as an input a pair of a key and its list of 
associated values. The output of the Reduce function is a 
sequence of zero or more key-value pairs. These key-value 
pairs can be of any type from those sent from Map tasks but it 
is usually the same type. A Reduce task receives one or more 
keys and their associated value lists. The output of all the 
Reduce tasks are merged into a single file. In the word count 
example, the Reduce function takes the input values, sums 
them and generates a single output of the word and the final 
sum. 
 
 

C. Execution 
In brief, a map-reduce job is executed as follows: 



1) A number of Map tasks are assigned to one or more 
chunks of data from the distributed file system. These chunks 
are converted to a sequence of key-value pairs. The way the 
pairs are produced is up to the developer of the Map function. 

 
2) The key-value pairs that come out of the Map tasks are 

then collected by a master controller and sorted by key. Then, 
each batch of key-value pairs with the same key, is given to a 
Reduce task. 

 

3) The Reduce tasks then, combine all the values 
associated with that key in some way determined by the 
developer of the Reduce function. 
 

The execution flow is showed in Figure 2. 
 
 
                                                       

                          

 
 

Figure 2. Execution Diagram 

IV. BUILDING A NON-POSITIONAL INVERTED INDEX WITH 
MAP-REDUCE   

 

A. Map function 
In our implementation, we feed each Map task with one 

line of data at a time. Specifically, each word of the line that is 
separated with a space, is transformed to a new string in the 
format “word \t DocId”, where \t is the Tab character and 
DocID is the name of the file that this particular word was 
found in. Also the Map function eliminates all unnecessary 
characters, like “!@#$%^&*” etc., for the purposes of the 
Inverted Index. 
 

B. Combiners 
Without any combiners, the output of the Map tasks input 

directly to the Reduce tasks. Because of the Map functions 
taking as an input more than one line, coming from multiple 
files, we are able to reduce the amount of data that have to be 
transferred across nodes of the network. This is done as 

follows.  When the same word appears in more than one line, 
then the Combiner function combines the result to the string 
with the format: 

word   \t   DocId1:WordFreq1 DocId2:WordFreq2 … 

where DocFreq, the occurrence frequency of the particular 
word. To sum up, the Combiner scans for identical words 
coming from the same Map task. 

C. Reduce function 
The output of each Combiner constitutes a small subset of 

the final Inverted Index. Therefore, our goal is to aggregate all 
those subsets to a final set. So, this function takes as an input 
the combined data and as an output, makes a final record i.e. 
the final Inverted Index. The format of the output is the 
following: 

 
Word   \t   DocID1:WordFreq1 | DocID2:WordFreq2 | … 

 
Figure 3 summarizes the whole procedure of building an 

Inverted Index in Map-Reduce.



 
Figure 3. Data Flow 

 

V. COST ANALYSIS 

In this section, we attempt to come up with a formula that 
estimates the total amount of time needed for an indexing job 
to complete on a cluster of nodes. For the sake of simplicity, a 
few assumptions must be made first, otherwise the problem 
becomes too complex and difficult to handle.  

First of all, we assume that each computing node has one 
central processing unit (CPU). All the nodes are connected to 
the same switch in order to avoid further calculations 
regarding connections via different routers and switches. Also, 
each node spawns one Map task and the total number of 
Reduce tasks is less than then number of total Map tasks. 
Furthermore, we do not take into account the size of the main 
memory on each node. This size could make a huge difference 
on the amount of time needed for a job to execute. That is 
because, the more data are stored in the main memory 
(multiple times faster than secondary memory), the less data 
are requested from the secondary (slow) drive. Hence the 
execution is faster.  

 
 
 
For our scenario, we assume having at our disposal:  
 

 A single computer, that is able to build an 
Inverted Index for the whole dataset. This can be 
seen as equivalent to executing one Map 
followed by one Reduce (at least the 
functionality of those) in a single node. The total 
time needed to complete is tS . In particular, the 
equivalent of the Map function should take tM, 
and the equivalent of the Reduce function should 
complete in time tR. Namely:  

 
              tS =  tM + tR 
 

Since, in our implementation, Combiners essentially do the 
same processing as Reducers, we can safely assume that this 
processing is all done in either of the two, in this case, in the 
Reducer.    
 

 A cluster that consists of   m   nodes with the 
aforementioned configuration. m and r 
correspond to the total number of Map and 
Reduce tasks, respectively. 

 
 The data at each node is read and processed serially.  
The dataset is considered already stored in a single disk in the 
single node setup, and in HDFS in the multi-node setup. We 
would like to estimate the total amount of time needed to 
complete a job, given the time needed for a single node to run 
the same job, ts, and the number of nodes, m, present in the 
cluster.  
 
 During execution, the Hadoop framework breaks the 
whole dataset in smaller portions of data. Each portion is 
assigned to a Map node and is being processed. All the Map 
tasks (one per node) are executed in parallel, hence the total 
time for Map tasks to complete equals to the execution time of 
one Map task. The amount of the parallel execution of the 
Map tasks is	

	

 
 

Upon completion of each Map task, the output 
becomes an input for the Combiner that is associated with the 
Map on the same node. As we said earlier, we use Combiners 
to reduce the data transferred across the network. For the 
purpose of our scenario we consider the processing time of the 
Combiners as negligible; as we said earlier, it is some amount 
of processing that has to be done in either the Combiner or the 
Reducer, and we can assume we load it up to the Reducer. 
What makes a huge difference is the amount of data that have 
to be transferred over the network from the Map tasks to the 
Reduce tasks, and here is where Combiners come into play. 



 
 The output of each Map task has to be transferred to 
the Reduce tasks. Next we try to get a rough estimate of the 
amount of data per chunk, K, that have to be transferred over 
the network with and without Combiners. We can assume that 
for a large number of Mappers it is safe to consider that almost 
all data coming out of each Map will have to get to a Reducer 
somewhere else on the net. 
 
 Let us assume that each chunk has the default size of 
64Mbytes. We take the length of the average English word as 
5.1 characters [5]. We should at least add spaces between 
words. Therefore, the length equals to 5.1+ 1 = 6.1 bytes per 
word. Also, we presume what we have pure text (no html or 
other mark-up in between) and the text is in 8-bit ASCII, too. 
So, if we divide the chunk size with the average size per word, 
we get around 11,001,453 non-unique words per chunk.  
 
 Without Combiners we have to transfer  “Word   \t   
DocId” approximately 11 million times. Specifically, Word is 
around 5.1 bytes, the tab character is 1 byte and the DocID 
takes 4 bytes assuming it is a Long Integer. Thus, the length 
per string is 10.1 bytes, and the total transfer is K=105.97 
Mbytes per chunk.  
 
 With Combiners we need to transfer “Word \t 
DocID1:WordFreq1 | DocID2:WordFreq2 …” per unique 
word in a chunk. Word is again 5.1 bytes. Each posting is 10 
bytes, assuming 4 bytes for docIDs and 4 for frequency (both 
Long Integers) plus 2 bytes for the delimiters (`\t' and `:' for 
the first posting and `|' and `:' for all the others.) To complete 
the calculation, we need to estimate the number of unique 
words per chunk and the average number of postings per 
unique word. 
 

We assume that no stop-list, stemmer or any other 
pre-processing that reduces the length or the number of 
words/tokens are used. 
 
 In linguistics, the number of unique words, N, in a 
text as a function of text length (in words) is given by the 
empirical law of Heaps [8]. According to Heaps’ Law and 
assuming beta=0.5 (a widely-known empirically found value), 
k=31.6 (we take the middle of the logarithmic range [10,100] 
using a base of 10---this is the suggested range for k in the 
literature, for English text) and n=11,001,453, we estimate 
N=104,812 unique words per chunk.  
  
Zipf's law states that given some corpus of natural language 
utterances, the frequency of any word is inversely proportional 
to its rank in the frequency table [9], i.e. the distribution of 
frequencies follows a power-law with an exponent of 1. It is 
also known that the distribution of document frequencies (DF, 
i.e. the number of documents a word occurs in) also follows a 
power-law, albeit with a higher exponent (steeper curve). 
Empirical data show that the exponent is around s=2 [11]. 
This means that the ith largest DF is 

	

 
 

, where c is some constant. The average document length 
is around 1,000,000 characters [5], i.e. 0.95367 Mbytes. So, 
we have 64 Mbytes/0.95367 Mbytes = 67.11 documents per 
chunk.  We assume that the most common word (i=1) appears 
in all chunk's documents, so c must be 67.11. Now the average 
DF is 

 
  
 Thus, empirical laws produce a very small number 

meaning that each unique word has almost zero postings; 
empirically the average is just above 1, which makes sense 
since most unique words occur in a single document.  

 
 Consequently, with Combiners, we have to transfer 
104,812 unique words of 6.1 bytes each associated on average 
with 1 posting of 10 bytes, that is K=1.61 Mbytes in total per 
chunk. Thus, using Combiners reduces the network load by an 
impressive 98.5%. 
 
 At first sight, we see that the data transferred for a 
single chunk, when we do not use the Combiner, is around 
twice the size of data without the use of it. The benefit comes 
when we take into account the number of the unique and the 
non-unique words in a chunk. As we calculated earlier, the 
total data need to be transferred when we use Combiners is K 
= 1.61 Mbytes = 0.00157 Gbytes = 0.01256 Gigabits.  
 
 To sum up, the total data that need to be transferred 
are: 
 
 

 
 
 

 
Now, even if we interconnect the nodes with an 

Ethernet network of one Gigabit per second, the amount of 
time needed to move the data across the nodes is significantly 
more than the time needed to process the same data. This 
equals to: 

 
 

 
 

 
 
 
 



As with the case of the Map tasks, the time needed 
for all the parallel Reduce tasks to complete is: 

 	

 
 

  
 

To determine the total time for completion of the 
cluster job, we use the following equation: 

 
 

 
 

 
The above equation could be an asset on the process 

of determining the approximate number of nodes of a cluster, 
given the execution time on a single node that processes the 
data serially.  

 
 
We have to underline here, the tradeoff for the 

benefits of parallelization, is the big communication cost 
between the nodes.  

 
 
 

I. CONCLUSIONS 
 
Map-Reduce is the state of the art for processing Big Data 

sets. Indexing is a parallelizable problem, so that Map-Reduce 
is an ideal framework for information retrieval. Since 
parallelization comes with an amount of overhead, it is crucial 
to specify when the Big Data are "big" enough in order to use 
a cluster for the process. Equally important is to be able to 
determine the approximate number of nodes that consist a 
cluster, in order to process Big Data at a given time. 
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