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The thresholding of document scores has proved critical for
the effectiveness of classification tasks. We review the most
important approaches to thresholding, and introduce the
score-distributional (S-D) threshold optimization method.
The method is based on score distributions and is capable
of optimizing any effectiveness measure defined in terms of
the traditional contingency table.

As a byproduct, we provide a model for score distribu-
tions, and demonstrate its high accuracy in describing em-
pirical data. The estimation method can be performed in-
crementally, a highly desirable feature for adaptive environ-
ments. Our work in modeling score distributions is useful
beyond threshold optimization problems. It directly applies
to other retrieval environments that make use of score dis-
tributions, e.g., distributed retrieval, or topic detection and
tracking.

The most accurate version of S-D thresholding — although
incremental — can be computationally heavy. Therefore, we
also investigate more practical solutions. We suggest prac-
tical approximations and discuss adaptivity, threshold ini-
tialization, and incrementality issues. The practical version
of S-D thresholding has been tested in the context of the
TREC-9 Filtering Track and found to be very effective [2].
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Traditional retrieval systems display documents in a de-

creasing order of their scores with respect to a request. A
score may correspond to the probability of relevance of the
document, or to some other similarity measure. The user is
supposed to go down such a ranked list of documents, and
stop at some point determined by the satisfaction (or dis-
satisfaction) of her request. In some retrieval applications,
however, rankings are not enough.

In binary classification tasks, e.g. document filtering, a
decision should be made for every document whether it be-
longs to a class or not. If a system is supposed to operate
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over long periods of time, the interaction between the sys-
tem and users should be minimized due to cost factors. De-
cisions such as where to “cut” a ranked list have to be made
automatically by the system. In some cases, decisions are
required to be taken as soon as a document arrives, there-
fore ranked lists are not even possible. These considerations
suggest the thresholding of document scores.

The degree of satisfaction or dissatisfaction of a user may
be expressed by an effectiveness measure, and the goal of a
system is to optimize this measure. Thresholding strongly
affects effectiveness, and there is no single threshold which
optimizes all effectiveness measures. As an example consider
two users: the first user values every relevant document as
1 unit of currency, the second user as 10 units, while a non-
relevant document costs to both users 1 unit. Assuming that
a ranked list has more and more non-relevant documents at
lower ranks, the gain of the first user will peak at a higher
rank than that of the second. Thus, the corresponding op-
timal thresholds are different.

A classification system operating over long periods of time
may accumulate history, e.g. documents and maybe rele-
vance judgments. History can be used to alter the classifica-
tion model, in order to make better predictions in the future.
Systems that alter the classification model as a response to
the history are called adaptive. Adaptive systems should
be able to perform updates in a limited number of calcula-
tions and memory. These practical considerations suggest
that only a portion of the history should be retained, and
algorithms ought to be implemented incrementally .
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Let us assume that a set of n documents has been judged

by a user, and that r of them have been found relevant to a
certain request. Then, the same set of documents is given to
a classification system which makes a decision for each doc-
ument whether to retrieve it or not. All possible four com-
binations of the user’s judgments and the system’s decisions
can be summarized (quite traditionally) in the contingency
Table 1.

system’s user’s judgment
decision relevant non-relevant
retrieved R+ N+

non-retrieved R− N−
total r n − r

Table 1: The traditional contingency table.



The variables R+, N+, R−, N−, refer to the number of
documents in each category. Effectiveness measures in re-
trieval tasks are usually defined as functions of these vari-
ables. Through the years, a wide range of effectiveness mea-
sures have been defined, e.g., precision, recall, the F mea-
sure, error rate, and utility, just to name a few popular ones.
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From the point of view of optimizing measures, D. Lewis

in [9] has formulated the probability thresholding principle
(PTP):

“For a given effectiveness measure, there exists
a threshold p, 0 ≤ p ≤ 1, such that for any set of
items, if all and only those items with probability
of class membership greater than p are assigned
to the class, the expected effectiveness of the clas-
sification will be the best possible for that set of
items.”

The PTP is a strengthening of the probability ranking prin-
ciple [10] to address the limitations of the latter in classifi-
cation environments.

The PTP creates two categories of effectiveness measures:
measures for which the PTP applies, and measures for which
it does not. For the former measures, optimizing a thresh-
old is theoretically trivial (we will see the practical difficul-
ties soon). A threshold on probability of relevance can be
set once, and the system is guaranteed to exhibit optimal
effectiveness in the future, no matter what the distribution
of probabilities of relevance for documents is.

As an example, let us consider the family U(λ1,λ2,λ3,λ4) of
linear utility functions:

U(λ1,λ2,λ3,λ4) = λ1R+ + λ2N+ + λ3R− + λ4N− , (1)

where λ1, λ2, λ3, λ4 denote the gain or cost associated with
each document that falls under the corresponding category.
The optimal probability threshold associated with any of the
above functions has been shown in [7] to be:

p =
λ2 − λ4

(λ3 − λ1) + (λ2 − λ4)
=

1

1 + λ
, (2)

where

λ =
λ3 − λ1

λ2 − λ4
. (3)

Since the optimal threshold depends only on the measure,
the PTP holds.

Practically, such probabilistic thresholds are difficult to
apply. The main reason is that even probabilistic retrieval
models do not obtain the actual probabilities of relevance for
documents. Traditional probabilistic models make extensive
use of order-preserving transformations (some of which are
difficult to reverse) of probabilities of relevance. Any such
transformation does not affect ranked retrieval, but makes
formulae like (2) practically useless, unless a way is found
to reverse the transformations. A transformation reversal
strategy has been adopted by the Okapi probabilistic sys-
tem with rather successful results [11].

For non-probabilistic retrieval models, however, how to
turn a similarity score into a probability of relevance is still
a fair question. In any case, optimizing a measure for which
the PTP does not hold (e.g. for the F measure [9]) requires

other considerations. A method based on score distribu-
tions, irrespective of what a score is, would be more general
and valid for any measure or retrieval model.
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There exists a distributional procedure, which we will call

the straightforward empirical method, that is capable of
finding an optimal threshold on training data. It consists
of the following steps:

• calculate the scores of all training documents,

• rank them,

• calculate the effectiveness measure at every position of
the rank,

• go down the rank and find the position where the ef-
fectiveness measure is optimal,

• set the threshold somewhere between the score that
corresponds to the position above and the next one.

The technique implicitly considers the density of relevant to
the non-relevant documents and the spread of their scores.
It has been applied many times before and, given sufficient
training data, works well (see e.g. [12]).

Although the straightforward empirical method seems like
a perfect choice for optimizing thresholds in classification
tasks, its drawbacks become apparent when adaptivity is
required. Firstly, there is no known way to implement it
incrementally. The scores of all accumulated training doc-
uments have to be re-calculated after every query update,
therefore document buffers are required. The fixed memory
model requirement of practical systems means that buffers
should be of limited size, thus some documents have to be
discarded as the history grows. This may have a negative
impact on the estimation accuracy, especially when the con-
vergence of classifiers is more important than responsive-
ness1. Secondly, the method gives absolutely no prediction
of the optimal threshold when there is no relevance infor-
mation, and it is bound to be very inaccurate with sparse
relevance data.

Our S-D method has the following advantages over the
above empirical technique.

1. It allows for better incrementality, retaining accuracy.
Most of the quantities it needs for the estimation can
be updated incrementally when new data become avail-
able.

2. It can give better predictions of where the optimal
threshold may be, when there is sparse or even no rel-
evance information.

3. It uses the statistical properties of the scores rather
than the actual values. Therefore, the estimation of
the optimal threshold may generalize better to unseen
documents.

1Responsiveness of classifiers is required when relevance
drifts exist. In such cases, old training data may be dis-
carded more safely, since their relevance judgment was valid
at the time it was generated and may not correspond to now.
Such considerations and others can be found in [3, 1].
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The S-D threshold optimization method can be applied for

any effectiveness measure of the form M(R+, N+, R−, N−),
i.e. M is any function of the variables of the contingency
Table 1. The optimization is based on the score distribu-
tions of relevant and non-relevant documents, and on their
relative density in a document set.

Let us assume that the scores of relevant documents are
distributed with a probability density function Pr(x). Then,
the quantity rPr(x) dx gives the number of relevant docu-
ments with scores in the range [x, x + dx). The number of
relevant documents which score above a threshold θ is

R+(θ) = r

∫ +∞

θ

Pr(x) dx . (4)

The number of non-relevant documents with scores above θ
is similarly defined as

N+(θ) = (n − r)

∫ +∞

θ

Pnr(x) dx , (5)

where Pnr(x) the probability density function of the score
distribution of non-relevant documents. The numbers of
relevant non-retrieved and non-relevant non-retrieved docu-
ments for θ are given respectively by

R−(θ) = r − R+(θ) , (6)

N−(θ) = (n − r) − N+(θ) . (7)

Using the last four equations, M can be written as a function
of θ: M (R+(θ), N+(θ), R−(θ), N−(θ)).

Optimizing M means either maximizing or minimizing it
(depending on whether larger M means better effectiveness
or the other way around), therefore the optimal threshold is
a solution of

dM (R+(θ), N+(θ), R−(θ), N−(θ))

dθ
= 0 . (8)

In order to solve this equation for a given M , we first need
to define the probability densities Pr(x) and Pnr(x). We
will model these distributions in Sec.4, and suggest practical
approximations in Sec.5.1 and 5.3.

In most cases, (8) does not have analytical solutions, so it
has to be solved numerically. For linear measures, however,
it simplifies greatly since the integrals cancel out with the
derivative. For example, for linear utility functions (Eq. (1)),
after a few calculations (8) becomes

λρPr(θ) = Pnr(θ) , (9)

where λ is given by (3), and ρ = r
n−r

is the relative density
of relevant to the non-relevant documents.

The probability P (rel|s) of a document with score s to be
relevant may be expressed as

P (rel|s) =
rPr(s)

rPr(s) + (n − r)Pnr(s)
. (10)

The probability of relevance at s = θ can be calculated by
using (9) on (10). The result is P (rel|θ) = 1

1+λ
, i.e. the

same as (2). Obviously, our method may be used, via (10),
to reverse scores into probabilities of relevance, however, we
do not see the need to do that since we can calculate the
optimal threshold in the first place.

*� ����� �	���	��	�
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C. Baumgarten in [4] has modeled score distributions, us-

ing the mean and deviation of the data, with a gamma dis-
tribution shifted by the minimum score. The motivation for
using a gamma distribution has been empirical, but the ap-
proach has worked out well. We will rather set out to build
a model from scratch.

Let us represent a query by an m-tuple q = [q1, . . . , qm],
where qi is a value that corresponds to the term i. A doc-
ument is represented similarly, using the same set of terms,
as ω = [ω1, . . . , ωm]. The values of the terms in documents
depend on a weighting scheme W . Subsequently, q and W
together determine the structure of the document space. We
will specify W only qualitatively such as: the larger the
similarity of a document to the query, the larger the docu-
ment score defined through the linear function of document
weights:

〈q, ω〉 = q ∗ ω =
∑

i

qiωi . (11)

Represented as m-tuples, documents and query are obvi-
ously points in IRm.

Our aim is to calculate the distribution of the scores of a
general class C of documents. Since the score of a document
is a linear combination of its components, the score distribu-
tion can be derived from the distribution of the documents
in IRm. This distribution can be represented by a probabil-
ity measure Pm on IRm. For every convex subset2 A ⊂ IRm,
the number Pm(A) gives the fraction of documents from C
for which their m-tuples are in A. Although a real-life set of
documents is countable, we represent it by the continuous
space IRm. The large number of different documents makes
this a reasonable approximation.

Of course, the distribution of documents does not have to
be smooth in IRm, and all documents may be restricted to a
hyper-surface in IRm of lower dimension than m, say m− 1.
Strictly speaking, we should then define a measure Pm−1 on
this (curved) lower dimensional space. We, however, prefer
to formulate everything in IRm, and to put possible con-
straints in Pm with the help of Dirac δ distributions3.

Let us denote [α, β) = [α1, β1)× [α2, β2)× · · · × [αm, βm)
and Pm(dω) := Pm( [ω, ω + dω) ). Given Pm, the character-
istic function φ of the score distribution is given by

φ(t) = E( eıt〈q,ω〉 ) =

∫
IRm

eıt〈q,ω〉 Pm(dω) , (12)

and the probability density of the scores of class C is given
by the Fourier transform of φ [8]:

PC(x) =
1

2π

∫ +∞

−∞
e−ıxtφ(t) dt . (13)

2The convexity of A is a fair requirement. Suppose you
do not demand A to be convex, for example take A to be
such that it consists of tiny balls around the points of the
documents, connected by very narrow tubes. Then, Pm will
look like a collection of peaks at the points of the documents.
In order to smooth these peaks out and get a nice continuum
limit, the convexity of the subspaces A is required.
3For example, if all documents happen to be distributed on
a hyper-sphere in IRm with center [0, 0, . . . , 0] and radius R,
then Pm(dω) = P (ω)δ(‖ω‖ − R) dω , where P is a positive
function on IRm such that

∫
IRm P (ω)δ(‖ω‖ − R) dω = 1 .

The δ distribution restricts the measure to be non-zero only
for documents that have lengths equal to R.
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Figure 1: Body (left) and tail (right) of the score density of non-relevant documents. Zero scores are excluded.

In the formulation above, the components ωi of the docu-
ments can be considered random variables, and the score is
a linear combination of these random variables

Sm =
m∑

i=1

Xi , Xi = qiωi . (14)

We will make the (common in IR) assumption that

Assumption 1. the components ωi of documents are dis-
tributed independently.

For the measure Pm, this means that it factorizes over the
components of IRm, i.e. there are m 1-dimensional measures
pi so that we can write

Pm(dω) =

m∏
i=1

pi(dωi) . (15)

As a result of this and the linearity of the score as function
of document components, the characteristic function can be
written as a product of characteristic functions of the com-
ponents:

φ(t) =
m∏

i=1

φi(qit) , φi(qit) =

∫ ∞

−∞
eıqitωi pi(dωi) . (16)

In order to construct the 1-dimensional measures pi, we
observe that weighting schemes usually are such, that if a
term does not appear at all in a document, then this term
gets weight zero. We relate the probability of term i to
appear in a document directly to its document frequency
across class C by defining

εi =
number documents in C containing term i

total number of documents in C
, (17)

and we call it the term probability (TP). Consequently, the
measure pi will have the form

pi( ωi ≤ x ) = (1 − εi)ϑ(x) + εiFi(x) , (18)

where ϑ is the step function, and Fi is some probability
distribution function (PDF) which depends on W . In the
simplest case of binary weighted document terms, Fi(x) =
ϑ(x− 1), ∀i. In general, Fi can be derived directly from the
W being used, or estimated empirically from a dataset.

So far, we have built a model for the score distribution
of a general class C of documents. The model is capable

of calculating the distribution from TPs and q. The only
assumption we have made is that of independence of term
occurrences. We have left open the form of functions Fi;
these should be defined according to the W used.

Turning to the independence assumption, our model will
more likely work better when there are less violations of
the assumption. This suggest a small number of dimen-
sions m, or that the model should be used for document
classes consisting of documents that have a small number of
components matched with the query, e.g. the class of non-
relevant documents Cnr. Dependencies blow up the scores.
Our model, however, allows us to take the dependencies in-
directly into account, through the functions Fi; these can be
adjusted accordingly to compensate for the score blow-ups,
as we will see next.

*�� �+��,����" �& ��� ��!��
Fig.1 shows the empirical score distribution of non-relevant

documents, Baumgarten’s gamma distribution fit, and the
density calculated by our model. Our S-D curve is calculated
with a Monte Carlo method [15], which is why it is plotted
with steps. The Rocchio-expanded query has around 400
dimensions. Training documents were Ltu weighted, while
test documents were Lu weighted [13].

We approximated Lu and the dependencies introduced
due to the large number of dimensions by

Fi(x) = F (x) =
log(x) − log(a)

log(b) − log(a)
, 0 < a < b , ∀i . (19)

This means that the density function coming with F behaves
as 1/x between a and b. We used the values that give a good
fit with the empirical data: a = 0.1 and b = 3.5. We want to
stress that, according to our observations, these parameters
can be taken constant for different queries of approximately
the same length.

Eq.(19) certainly does not correspond to Lu weights. It
is just an ad hoc formula to demonstrate how robust our
model is: we have effectively obtained a very good fit on the
empirical data, using the same F for all terms, and the effect
of dependencies has turned out to be directly related to the
number of dimensions, no matter which ones. The gamma
distribution, nevertheless, gives a surprisingly good fit over
a range of queries and dimensionalities. But our model is
more accurate exactly where this is needed: on the tail .
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Figure 2: Empirical score distributions and the corresponding exponential (left) and Gaussian (right) fit.
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So far, we have worked out an accurate optimization at

all costs. As a result, it may be computationally heavy to
calculate the score densities Pr and Pnr using the model we
have described in Sec.4. Moreover, the model of Sec.4 may
break down for Pr due to the increased number of depen-
dencies. In any case, the goal of threshold optimization is to
improve filtering, and too much of a threshold accuracy may
not pay off in effectiveness (this still remains to be seen). Let
us see how the optimization can be applied more efficiently
without sacrificing too much accuracy.

-�� ��,  ��" ��.�� /
In order to simplify the calculation of the score densities,

it is sensible to look if a Central Limit Theorem [8] applies
to Sm (Eq.(14)) in the limit of a large number of dimensions
m, and that the score distribution becomes Gaussian in this
limit. If the answer to the question whether a Gaussian limit
appears is yes, then the next question is when it appears, i.e.,
for which values of m. Which values of m can be considered
large?

For Pnr, we show in App.A that a Gaussian limit is not
likely, and if it appears, then only at a very slow rate with
m. Empirically, we have never seen Gaussian shapes even for
all dimensions resulted from massive expansion of queries.
In App.B, we prove that a Gaussian limit appears for Pr.
Furthermore, we show that the distribution approaches the
Gaussian quickly, such that corrections go to zero as 1/m.
Empirically, Gaussian shapes form at around m = 250 (Fig.2,
right).
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To ensure a Gaussian central limit for Pr, high dimen-

sionality is required. Obviously, long queries can only be
obtained with massive expansion through e.g. relevance feed-
back. One could argue against high dimensionality for ef-
ficiency reasons or due to the increased term dependencies
introduced. Massive query expansion, however, has been
shown to be effective [5]. Moreover, long queries are nec-
essary when tracking relevance drifts, which are likely to
occur in the retrieval environments we consider [3]. Above
all, setting the thresholds right has proved to be critical for
effectiveness in classification environments.

We do not recommend giving up on high dimensionality,
since shorter queries may give zero scores for relevant docu-
ments truncating Pr at zero. Not only it is not obvious how
to estimate the parameters of a truncated distribution, but
also our empirical data seem too irregular to be modeled by
anything. A Gaussian limit for Pr is convenient, simplifying
the calculations greatly.
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We have proved that Pnr does not have a Gaussian limit

—at least not in a usable number of dimensions— so the
Fourier transform method (Eq.(13)) seems unavoidable. How-
ever, a great (but ad hoc) simplification would be to fit a
simple exponential of the form c1 exp(−c2x) on the empirical
non-relevant score distribution. This approach has worked
out well in [2], using a buffer of the top-50 scoring non-
relevant documents and 5 bins (Fig.2, left).
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Figure 3: The optimal T9U threshold.

An extra bonus of using an exponential Pnr is that, for lin-
ear measures, (9) can be solved analytically (using a Gaus-
sian Pr). Fig.3 shows the optimal T9U4 threshold, which
is just the score at which the densities Pr and Pnr, weighed
as λr and n − r respectively (Eq.(9)), intersect each other.
The complete analytical solution for optimizing linear utility
functions can be found in [2] or [1, pg. 53–54]. For nonlinear
measures, however, (8) still has to be solved numerically.
4T9U is a linear utility with (λ1, λ2, λ3, λ4) = (2,−1, 0, 0).



-�* ���� ���! 	"������1����"
To estimate a Gaussian Pr, our method so far relies on

relevance information. (Pnr can be constructed with no rel-
evance information, using (13) and TPs calculated on all
documents Cn. Those TPs are a good approximation of
the TPs of the class of non-relevant documents Cnr, since
n >> r.) How should Pr be initialized when there is no
relevance information?

The query itself can give an estimate of where Pr lies, e.g.
||q||2 can be seen as the maximum relevant score. Some
reasonable assumption (by taking Pnr into account as well)
for the standard deviation σr of Pr can produce a usable
curve, e.g. through an equation μr = ||q||2 − 3σr, where μr

is the mean of Pr.
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Let us see how the Gaussian–exponential model can be

applied incrementally in adaptive environments. A Gaussian
is defined by its mean and deviation. In general, means and
deviations can be updated incrementally. In our context,
however, every query update causes the scores of previously
seen documents to change, suggesting that all scores should
be recalculated. Assuming a static W , in the sense that
document weights do not depend on any statistics external
to documents (e.g. documents are only tf-weighted), it has
been shown in [6, 2] that

μr =
1

r

r∑
i=1

〈q, ωi〉 =
1

r
〈q,

r∑
i=1

ωi〉 . (20)

Obviously, the sum of relevant document tuples is sufficient
and can be updated incrementally.

The variance σ2
r can be calculated via σ2

r = μ
(2)
r − μ2

r ,
where the mean of the squared scores is given by

μ(2)
r =

1

r

r∑
i=1

〈q, ωi〉2 =
1

r

∑
jk

qj

(
r∑

i=1

ωijωik

)
qk , (21)

where e.g. ωij is the value of the jth component of the ith
document. The proof of (21) is given in [1, pg. 144]. The sum
in the parenthesis can be represented by a 2-dimensional
matrix o with components

o
(r)
jk =

r∑
i=1

ωijωik , (22)

and it can be updated as o
(r+1)
jk = o

(r)
jk + ω(r+1)jω(r+1)k ,

upon the arrival of document ωr+1.
The exponential fit for Pnr requires a small document

buffer to hold the top-scoring non-relevant (retrieved) doc-
uments, because all scores should be recalculated. If the
buffer is full when a new non-relevant document is retrieved,
the approach of ranking the buffered documents and discard-
ing the lowest-scoring one has worked out well in [1, 2].
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A special problem that shows up in adaptive environments

is that relevance information is becoming available only for
documents retrieved. This may invalidate the score statis-
tics required, and lead a system to a selectivity trap [11, 3].
For instance, estimating a Gaussian from data which do not
include its left tail (these are the data below the threshold),
may overestimate the threshold, retrieving no more docu-
ments.

A solution would be to use a soft probabilistic threshold ,
i.e. a document that scores at s, s < θ, may still be retrieved
by sampling it with a probability P (rel|s) given by (10). Of
course, the statistic that a document retrieved like this pro-
vides, should be weighted as 1/P (rel|s). In this way, score
statistics can be maintained more accurately, and selectivity
traps can be avoided. The idea remains to be tested.

2� ��
���	�
�
We have developed a novel method for optimizing thresh-

olds, namely, the score distributional (S-D) threshold opti-
mization. The method is capable of optimizing any effective-
ness measure defined in terms of the contingency Table 1.
The analysis we have provided is general enough to apply
to a range of retrieval models, from probabilistic to vector
space. Moreover, S-D thresholding can be applied incremen-
tally, a highly desirable feature for adaptive environments.

S-D thresholding is based on score distributions, therefore
we have developed models for their estimation. We have
provided a range of choices, from very accurate and com-
putationally expensive to practical and less expensive ap-
proximations. Whether our most accurate model for scores
(Sec.4) pays off in classification effectiveness by providing
better thresholding still remains to be seen.

In our attempts to approximate inexpensively score dis-
tributions, we have proved that the distribution of relevant
document scores has a Gaussian limit that shows up in a
practically usable number of query dimensions (around 250).
We have also proved that the distribution of non-relevant
document scores does not have a Gaussian limit (at least not
in a usable number of dimensions), however, we have empiri-
cally found that its right tail can be very well approximated
with an exponential. This practical Gaussian–exponential
version of the S-D threshold optimization has been tested
in the context of the TREC-9 Filtering Track and presented
exceptional end-results [2].

At any rate, our work in modelling scores is also useful
beyond threshold optimization. It is directly applicable to
other retrieval environments that make use of such distribu-
tions, e.g., distributed retrieval [4], or topic detection and
tracking [14]. For instance, it can be employed (via Eq.10)
to reverse document scores into probabilities of relevance,
giving a way of combining the output of several search en-
gines into a single ranking.
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Let Cnr be the class of non-relevant documents. In or-

der to investigate the behavior of the score distribution for
Cnr, we investigate the cumulants [8]. These are defined
through the moment generating function φ(−ıt) of the score
distribution, where φ is the characteristic function.

K(r)
m :=

drlog φ(−ıt)

dtr

∣∣∣
t=0

. (23)

The first cumulant K
(1)
m is equal to the mean of the distribu-

tion, and the second cumulant K
(2)
m is equal to the variance.

For a given random variable Sm with given cumulants K
(r)
m ,

the cumulants of the variable

Ŝm :=
Sm − K

(1)
m(

K
(2)
m

)1
2

, (24)

shifted such that it has zero mean and unit variance, are
given by

K̂(1)
m := 0 , K̂(r)

m :=
K

(r)
m(

K
(2)
m

)r
2

r ≥ 2 . (25)

For a Gaussian distribution, the logarithm of the moment
generating function is given by

log φ(−ıt) := tK(1)
m +

t2

2
K(2)

m . (26)

The above trivially leads to the conclusion that

Theorem 1. whenever limm K̂
(r)
m → 0 for all r ≥ 3, then

Ŝ = limm Ŝm is a normal variable, that is, it has a Gaussian
probability distribution with zero mean and unit variance.

This theorem is not the most efficient to prove a Gaussian
limit, because it asks for the limiting behavior of all cumu-
lants, but it gives a view on how fast the limit appears: if

the cumulants K̂
(r)
m go to zero for large m at a very slow rate,

then the probability distribution will start to look Gaussian
only for very large m.

Because of the independence assumption, the character-
istic function factorizes over the components (Eq.(16)), so
that its logarithm becomes a sum over the components of
logarithms

K(r)
m =

m∑
i=1

qr
i κ

(r)
i , κ

(r)
i :=

drlog φi(−ıt)

dtr

∣∣∣
t=0

. (27)

The moments of the components depend linearly on the TPs:
according to (18) we have

E(ωr
i ) =

∫ ∞

−∞
xr pi(dx) = εi

∫ ∞

−∞
xr dFi(x) . (28)

The cumulants can be written as finite sums of products of

the moments, so that in this case κ
(r)
i is a polynomial in εi,

i.e.

κ
(r)
i = εiF

(r)
i + P2,r(εi) , F

(r)
i :=

∫ ∞

−∞
xr dFi(x) , (29)

where P2,r(ε) denotes a polynomial in ε containing orders 2
to r. The interpretation of the cumulants as an expansion
in the TPs makes sense, because εi ≤ 1 by definition.

Now, we shall try to derive from the constructed model
whether the score distribution converges to a Gaussian for
large m, and if it does, what the rate of convergence is. In
order to achieve this, we want to replace the sum in (27)
by m times the average query component times the average
cumulant. To do this, we need some more assumptions.

The first one is based on the empirical observation that,
whereas the TPs εi and the moments E(ωi) and E(ω2

i ) of
the components vary several orders of magnitude, the ratios
E(ωi)/εi and E(ω2

i )/εi vary within only one order of magni-
tude. Together with (28), the mentioned observation leads
to the conclusion that the PDFs Fi do not vary much for the
different components, or at least that the variations do not
matter much. The important differences between the dis-
tributions of the components seems to come from the TPs.
We implement this in our model by the assumption that



Assumption 2. the PDFs Fi are the same for all com-
ponents, and equal to a single PDF F .

In order to determine the rate of convergence, we intent to
use Theorem 1, so that we need to determine the behavior of
the cumulants for large m. According to (27) and (29), we
then need the distributions of the query components (QCs)
and the TPs. For both cases, we specify the distribution of
the variable by applying a generalization of Zipf’s law. For
QCs let denote

q̄m = the value of the maximal QC.

For every m, there is a mapping Qm with Qm(1) = 1, such
that the ordered labeling of the variables satisfies

qi = q̄mQm(i) for every i = 1, . . . , m . (31)

Zipf’s classical law is obtained with Qm(i) = 1/i. The dis-
tribution of the variable has moments

q(r)
m =

q̄r
m

m
Q(r)

m , Q(r)
m :=

m∑
i=1

Qm(i)r .

By definition, the mapping Qm is decreasing with Qm(1) =
1, so that Qm(i)r1 ≥ Qm(i)r2 for all i = 1, . . . , m if r1 < r2

and

Q(r1)
m ≥ Q(r2)

m for r1 < r2 . (33)

Furthermore, all moments exist, also in the limit of m → ∞,
since in the worst case we would have Qm(i) = 1 for all

i = 1, . . . , m, so that q
(r)
m = q̄r

m. Therefore, we conclude
that

Q(r)
m = O(m) for all r > 0 ,

where the O-symbol refers to the behavior with m: we say
am = O(bm) if there is a sequence of numbers cm such that
|am/bm| < cm for all m, and limm→∞ cm exists. The sums

Q(r)
m do not have to exist in the limit m → ∞: for example

in the classical Zipf case, we have Q(1)
m = log m + O(1).

Exactly the same can be done for the TPs, leading to a
maximal value ε̄m, a decreasing mapping Em with Em(1) = 1
and such that εi = ε̄mEm(i). The moments of the TPs are

denoted ε
(r)
m .

At this point, we want to notice that the ordering (33) of

the coefficients E(r)
m corresponds with the ordering of powers

of ε̄m, which supports the approximation to

Approximation 1. keep only the lowest order in εi for
every i = 1, . . . , m in (29),

since εi is smaller than 1.
The following assumption is based on the empirical ob-

servation that QCs and TPs seem to take their values in-
dependently: if we order the QCs, and make a plot of the
values of the corresponding TPs in this ordering, they seem
to jump around randomly. This suggests to assume that

Assumption 3. the TPs and the QCs take their values
independently of each other,

so that the average over the TPs can be taken independently
of the average of the QCs. Assumption 3 together with (27)
and Approximation 1 lead to

K(r)
m

m→∞−→ m q(r)
m ε(1)

m F (r) =
1

m
q̄r

mQ(r)
m ε̄mE(1)

m F (r) . (35)

The interesting ratio of the cumulants is then given by

K
(r)
m(

K
(2)
m

) r
2

=
Q(r)

m(Q(2)
m

) r
2
×

(
m

ε̄mE(1)
m

)r
2−1

× F (r)(
F (2)

) r
2

. (36)

According to Theorem 1, the score distribution becomes
Gaussian for large m if this final expression vanishes for
all r ≥ 3.

The main use of Assumption 3 is that it enables us to
give an estimate of the ratios on the l.h.s. of (36), in which
the contribution of the query completely factorizes from the
contribution from the document distribution. A possible
difference in the rate of convergence between two document
classes only appears in the second and the third factor of
the r.h.s. of (36).

The contribution from the first factor on the r.h.s. of (36)
is determined by the distribution of the QCs. Using (33)

and the fact that Q(r)
m ≥ 1 for every r ≥ 3, we see that

lim
m→∞

Q(r)
m(Q(2)

m

) r
2

= 0 ⇐⇒ lim
m→∞

1

Q(2)
m

= 0 . (37)

So the contribution from the QCs only helps towards a Gaus-

sian limit if limm→∞ Q(2)
m = ∞. We observe a behavior of

the distribution of the QCs such that Qm(i) ∼ (i)−ν with
0.5 < ν < 1. For this behavior, only the case of ν = 0.5
would, strictly speaking, lead to the first factor on the r.h.s.
of (36) to become zero, as (log m)r/2. We conclude that, if
the distribution of the QCs helps towards a Gaussian limit,
then only very slowly.

The third factor on the r.h.s. of (36) does not vary with
m (by Assumption 2), so that we further only need to look
at the second factor, which is determined by the distribu-
tion of the TPs. Since ε̄m ≤ 1, only the behavior of the
mapping Em can help towards a Gaussian limit, and then

only if limm→∞ E(1)
m does not exist. However, we know that

E(1)
m = O(m), so that the second factor on the r.h.s. of (36)

will never go to zero.
We conclude that it is not likely for Cnr to show a Gaussian

limit, and if it does, then only at a very slow rate with m.
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The analysis for Cnr was possible mainly because the TPs

were assumed to be small. For the class Cr of relevant docu-
ments, this does not have to be the case anymore. Actually,
the introduction of the TPs does not seem to make sense
anymore if they have to be considered close to 1.

For Cr, it seems to be more appropriate to adopt the pic-
ture of Pm to be centered around a point q′ ∈ IRm. It
could, for example, have a multidimensional Gaussian shape
around q′, or could be nonzero only inside a hyper-ellipsoid
around q′ and zero outside. In both examples, the distribu-
tion is completely defined by q′, and a matrix Um: for the
Gaussian case, it is the variance matrix, and the other case
the matrix determines the shape of the ellipsoid. We shall
assume that the distribution of Cr can be defined by these
three elements: the center q′, the ‘shape’-matrix Um, and
a function that determines the rate of decrease (reasonably
fast for a Gaussian, infinitely fast for the ellipsoid, and so
on). We summarize the above as

Assumption 4. in the case of Cr, for every m there is
an invertible m × m-matrix Um and a point q′ ∈ IRm such



that

Pm(dω) =
| det Um|

νm
f( ‖Um(ω − q′)‖2 ) dω , (38)

where νm :=
∫

IRm f( ‖ω‖2 )dω is the volume of the function
f in IRm, and this function is such that νm does not grow
faster with m than a power of m!.

The factor | det Um| is necessary for the correct normaliza-
tion of the probability distribution in IRm. For example
with the Gaussian shape, (UT

mUm)−1 is the variance matrix
in this formulation, and f(x2) = exp(− 1

2
x2). Notice that

Pm induces the ‘natural’ metric ‖ω‖Um
:= ‖Umω‖.

Let us denote

Vm := (U−1
m )T and αm :=

√
2π

νm−2

νm
. (39)

Let furthermore Sm be the random variable representing the
score of documents from Cr with probability measure (38).
We will prove that, under the above assumption,

Theorem 2. the limiting variable of the sequence

σm := αm
Sm − 〈q, q′〉

‖Vmq‖
is a normal variable.

Furthermore, we will show that the distribution of σm ap-
proaches the Gaussian such that corrections go to zero as
1/m.

We start with expressing νm :=
∫

IRm f( ‖ω‖2 )dω in terms
of an 1-dimensional integral. This is possible because the
integrand only depends on the length of ω, so that we can
go over to spherical coordinates and write

νm = γm

∫ ∞

0

f(x2)xm−1 dx , γm :=
2π

m
2

Γ(m
2

)
, (41)

where γm is the volume of an m-dimensional sphere with
unit radius, and Γ denotes the gamma function. At this
point, we want to note a few facts we shall need later.
Firstly, we have

γm−1

γm−3
= π

Γ(m−3
2

)

Γ(m−1
2

)
= π

Γ(m−3
2

)
m−3

2
Γ(m−3

2
)

=
2π

m − 3
. (42)

Secondly, since we demand that νm exists for every m, we
obviously have

lim
x→∞

f(x2)xm−1 = 0 for every m . (43)

Thirdly, since we demand that νm does not grow faster with
m than a power of m!, we have

lim
m→∞

αm−2

αm
= lim

m→∞

√
νm

νm−2
× νm−4

νm−2
= 1 . (44)

We shall prove the theorem by proving that the moments
of the the variables σm converge towards the moments of a
Gaussian variable. Under the distribution (38) the variable
σm has moments

E(σr
m) =

∫
IRm

(
αm

〈q, ω〉 − 〈q, q′〉
‖Vmq‖

)r

Pm(dω)

=
αr

m

νm

∫
IRm

〈Vmq, ω〉r
‖Vmq‖r

f( ‖ω‖2 ) dω , (45)

where we performed the substitution ω �→ U−1
m ω +q′ on the

integration variable. To prove that all moments exist, we
can apply the Schwartz inequality, and go over to spherical
coordinates to find that

E(|σm|r) ≤ αr
mγm

νm

∫ ∞

0

xrf(x2)xm−1 dx = αr
m

νm+rγm

νmγm+r
.

In order to evaluate (45) further, we note that every ω can be
written as a linear combination of ωp parallel to Vmq and an
orthogonal component ωo, so that ‖ω‖2 = ‖ωp‖2 + ‖ωo‖2.
Furthermore, we can always perform an orthogonal basis
transformation such that ωp lies along a coordinate axis of
IRm, so we can write 〈Vmq, ω〉 = ‖Vmq‖ωp, and

E(σr
m) =

αr
m

νm

∫ ∞

−∞
yr

∫
IRm−1

f( y2 + ‖ωo‖2 ) dωo dy .

The integrand is spherical symmetric in ωo, so that we can
go over to spherical coordinates again, and the integral over
IRm−1 reduces to an 1-dimensional integral

E(σr
m) =

∫ ∞

−∞
yrfm(y) dy , (47)

where

fm(y) :=
γm−1

νmαm

∫ ∞

0

f
( y2

α2
m

+ x2
)

xm−2 dx . (48)

So the moments of the variable σm are equal to the moments
of a variable with probability density fm.

We will now prove that the sequence of density functions
fm has a Gaussian limit. Denote the derivative of f by f ′,
then

dfm(y)

dy
=

γm−1

νmαm

2y

α2
m

∫ ∞

0

f ′
( y2

α2
m

+ x2
)

xm−2 dx

= − γm−1

νmαm

y

α2
m

(m − 3)

∫ ∞

0

f
( y2

αm
+ x2

)
xm−4 dx

= −y
αm−2

αm
fm−2

(αm−2

αm
y
)

,

where we applied partial integration and used (43) in the
second step, and used (42) and the definition of αm in the
last step. Using (44), we find that the limiting density f∞
satisfies the differential equation

df∞(y)

dy
= −yf∞(y) ,

which has a Gaussian with zero mean and unit variance as
solution. Notice that convergence via the differential equa-
tion implies pointwise convergence, so that we can conclude
that the moments E(σr

m) become those of a Gaussian distri-
bution with zero mean and unit variance. This then, leads
to the conclusion that σm becomes a normal variable.

One might argue that f has to be continuous for this
proof, for its derivative is used. This derivative, however,
only shows up under an integral, so that it is well defined for
discontinuous functions with the help of Dirac distributions.

To answer the question how fast the Gaussian limit ap-
pears, we just take νm = a(m!)k + O( (m!)k ) with some
a, k > 0, so that it is easy to see that

αm−2

αm
= 1 + O

( 1

m

)
, (50)

and we can conclude that the distribution converges to the
Gaussian as 1/m.


