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ABSTRACT
We analyse query length, and fit power-law and Poisson distribu-
tions to four different query sets. We provide a practical model for
query length, based on the truncation of a Poisson distribution for
short queries and a power-law distribution for longer queries, that
better fits real query length distributions than earlier proposals.

Categories and Subject Descriptors: H.3 [Information Storage and Re-
trieval]: H.3.3 Information Search and Retrieval; H.3.7 Digital Libraries
General Terms: Measurement, Experimentation, Theory
Keywords: Query length, Power-law, Zipf’s law, Transaction log analysis

1. INTRODUCTION
From analysing query-logs, previous research has suggested that

the distribution of query lengths can be approximated with the (gen-
eralized) Zipf’s law or a power-law [5, 7]. The law appears to fit
well to the largest length observations k ≥ k0 (where k0 depends
on the domain) but not to the whole sample. For example, data
show that the length frequency for web queries peaks at 2 rather
than at single keyword queries, suggesting a k0 > 2. In the dis-
crete case, the fraction of queries with length k is given by

p(k) = Pr(X = k) = Ck−s for k > k0 (1)

with C a normalizing constant, s the scaling parameter, and k0 a
lower bound from which onwards the power-law holds [2].

Others, without empirical justification, modeled query lengths
with a Poisson distribution by setting its mean to the average query
length [1]. Using a Poisson distribution, in a population of queries
with average length µ, the fraction of queries with length k is

Poisson(k; µ) =
µke−µ

k!
. (2)

In this paper, we provide a model for query length. Beyond the
theoretical interest, such a model has also practical applications in
optimizing query cache size in search engines, in generating simu-
lated queries for efficiency testing, and for effectiveness evaluation
[e.g., 1]. Using several query data-sets, we confirm that the right
tail of the length distribution is better approximated with a power-
law rather than a Poisson, and introduce a truncated model. In the
process, we estimate the slope s for English queries. Finally, we
speculatively explain why some data deviate from a power-law and
what this may mean for IR.

2. EMPIRICAL DATA
Four different query data-sets were analyzed: TREC [6]’s Mil-

lion Query Track 2007, Terabyte Tracks 2005 and 2006, and AOL
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Table 1: Query length statistics per data-set and the resulting
power-law fit values.

queries N min max mean median peak k0 s
MQ07 10k 1 30 4.11 4 3 6 5.10
TB05 50k 1 18 2.79 2 2 5 4.89
TB06 100k 1 39 4.11 4 3 9 5.84
AOL 21M 1 245 2.34 2 1 6 4.92

[3]; Tab. 1 shows (in the first seven columns): the query set; the
number of queries; the minimum; maximum; mean; and median
query length; and the most frequent query length. What is strik-
ing is that, although typical queries are short with 2-4 terms, longer
queries up to 245 for AOL do occur.

We applied the methods of Clauset et al. [2] to automatically de-
termine the scaling parameter, s, using maximum likelihood meth-
ods, and the lower bound, k0, by minimizing the Kolmogorov-
Smirnov statistic. These values are in the final two columns of
Tab. 1 and the resulting distribution is depicted in Fig. 1.1 The
method gives reasonable power-law fits by excluding short lengths
(< k0). The scaling parameter is around 5 for query lengths. This
gives a much steeper slope on log-log plots than the familiar Zipfian
distribution of word frequencies. Fig. 1 also shows (with impulses)
the Poisson distribution used by [1]; it matches well with the data
at short lengths, but clearly lacks the tail.

The power-law model matches better the data in wider ranges
of lengths than the Poisson model. While the fits on MQ07 and
TB06 are good, there are some deviations in the right tails of the
TB05 and AOL data. The TB05 data may be better fitted with a
similar distribution, namely a power-law with an exponential cut-
off [2]: p(k) = Ck−se−λk. Note that Eq. 1 can be obtained from
the latter for λ = 0. This distribution is a common alternative
because it captures finite-size effects, e.g., earthquake magnitude
data have the same lack of tail due to the finite amount of energy in
Earth’s crust. We can speculate that the data-set was probably cre-
ated in a way that there was a maximum query length imposed. The
imposed maximum can be indirect, e.g., a result of the maximum
amount of effort and time users are willing to put into formulating
queries. The “bump” in the AOL data seems of a technical nature
possibly due to a shift from typed queries to cut-and-paste queries;
not knowing whether and how these data are processed, we will not
speculate any further.

3. TOWARDS A PRACTICAL MODEL
All the fits on the four data-sets are problematic at short lengths.

We argue that the deviation of the data from the power-law is an
1While it is clearer to plot the complementary cumulative distribution func-
tion (CDF) P (k) = Pr(X ≥ k), we opt here top plot Eq. 1 directly so
that we can show the Poisson distribution over initial query lengths in the
same figure.
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Figure 1: Power-law and Poisson fits on query-lengths of four data-sets.

artifact of the specificity of the indexing tokens provided by the
query/indexing language. One can imagine a system indexing on
binary-terms (adjacent pairs of keywords) or n-grams, where sin-
gle index tokens are adequately specific to be used more frequently
than used in multiples.2 For example, re-indexing on word se-
quences of length (k0 − 1) would map queries of k0 words to a
length of 2 tokens, k0 + 1 to 3 tokens, etc., and queries with < k0

words will receive 1 token length. The net effect will be to merge
the initial data-points to a single one, raised to better fit the power-
laws in Fig. 1. This is not an unrealistic scheme since it is similar
to indexing on all potential phrases and their individual words.

Since the bulk of queries concentrates at short lengths where
a power-law does not fit given the current indexing languages, it
makes practical sense to use a mix of truncated Poisson/power-
law to model query lengths. In such a practical model, lengths are
Poisson-distributed for 1 < k < k0 and power-law-distributed for
k ≥ k0. The choice of k0 depends on the specific domain, i.e., a
combination of features of the document collection, query/indexing
language, and pattern of use of the system.

4. CONCLUSIONS
All our power-law fits on the distribution of lengths of English

queries resulted in exponents of around 5, giving a much steeper
slope in log-log plots than the power-law known to hold for word
frequencies. This result probabilistically forecasts the lengths of
the natural language fragments humans use to formulate informa-
tion needs. The relative steepness of the power-law indicates that
users do not need many words to formulate information needs or
that the diminishing value of adding words appears soon.

Deviations of real data from the power-law may be explained by
2Of course, such an indexing scheme will effectively square the order of
index size.

either finite-size effects or insufficient specificity of indexing terms.
Studies in other fields, e.g., economics, have shown that deviations
of data from the power-law at hand are usually an indication of inef-
ficiencies in the system that the data come from. Pennock et al. [4]
studied power-law distributions of numbers of web links and found
that deviations of data from the power-law per category of websites
correlate to how much competition is present in that category. The
better the power-law fit, the more competitive the category. For
query lengths, we have shown how a simple process of re-indexing
on longer text fragments can “fix” some deviations, a fact that may
point to inefficiencies in single-word indexing schemes.
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