
Adaptive and Temporally-dependent
Document Filtering

een wetenschappelijke proeve
op het gebied van de

Natuurwetenschappen, Wiskunde en Informatica

Proefschrift

ter verkrijging van de graad van doctor aan
de Katholieke Universiteit Nijmegen,

volgens besluit van het College van Decanen
in het openbaar te verdedigen op

woensdag 20 Juni 2001
des voormiddags om 11.00 uur precies

door

Avi Arampatzis

geboren op 1 maart 1973
te Xanthi, Griekenland



Promotor: Prof. C.H.A. Koster

Co-promotor: Dr. ir. Th.P. van der Weide

Manuscriptcommissie: Prof. D. Christodoulakis
University of Patras, Greece

Prof. S.E. Robertson
Microsoft Research Ltd, Cambridge, UK, and
City University, London, UK

Dr. T. Strzalkowski
State University of New York at Albany, USA

c⃝ 2001 by Avi Arampatzis (avgerino@cs.kun.nl), Nijmegen, The Netherlands
ISBN 90-9014891-4



στoυς γoνϵίς µoυ ,
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Chapter 1

Introduction

The digital and networking revolution over the last decade has made large amounts of
digital information available. This tremendous increase in digital information has led to
a new challenge in information seeking (Oard and Marchionini, 1996). Currently, users
every day find themselves confronted with large amounts of information in the form
of news, e-mail messages, and especially World-Wide Web pages. Although users have
access to a rich body of information, only a small fraction of this is actually relevant to
the interests of any particular user. In order to reduce the effort a user has to put into
determining which information is relevant to his or her interests, an automated solution
is indispensable.

1.1 The Information Seeking Paradigm

An information seeking process begins with a user’s goals. Let us assume a user who has
an information request or interest . The purpose of an automated information seeking
system is to process information sources and provide the user with the information sought.
An information seeking system consists, in general, of four basic components:

• a way for representing the information request,

• a way for representing information sources,

• a way of comparing the above representations, and

• ways of using the results of the comparison.

Information sources are entities which contain information in a form that can be inter-
preted by the user. These may contain text, audio, still or animated images. Infor-
mation sources are commonly referred to as documents . Requests and documents are
represented by some characterization language. The process of creating representations
is widely known as indexing , and its goal is to assign terms that are deemed to best
represent content. In general, indexing can be broken down into term selection and term
weighting . Representation makes it possible to automate the process of computing com-
parisons, e.g. scores , between requests and documents. The results of the comparison
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are used to display the information sought by the user, or modify the representation of
the request — through a relevance feedback mechanism — attempting to improve the
search. Retrieved documents may also make the user change her mind, so that she issues
another (revised) request. A general model of an information seeking process is depicted
in Figure 1.1 (Belkin and Croft, 1992; Croft, 1993).

user request

representation

represented request

information sources

representation

represented sources

comparison

retrieved sources feedback

Figure 1.1: A general information seeking model.

The model we have just described is very general. The more precise nature of an
information seeking process is determined by the different possible types of information
requests and sources. This thesis is mainly about a particular type of information seeking
process known as document filtering .

1.2 Document Filtering

Document filtering is an information seeking process that searches through a dynamically
generated document collection, e.g. a stream of arriving documents, for documents which
match a user interest. The user interest is assumed to be long-term, in contrast to one-
time queries in traditional information retrieval, and we will call it a topic. Filtering may
also be seen as a binary classification/categorization task where each new document has
to be classified under one of two categories: relevant, or non-relevant.

Document filtering, and similarly other information seeking processes, can be bro-
ken down into three sequentially-performed sub-tasks or modules: collection, selection,
and display of documents. The overall picture is shown in Figure 1.2. Collection is
concerned with providing a document stream. Two ways of collecting documents may
be distinguished: passive collection e.g. from a newswire (Denning, 1982), or pro-active
collection e.g. with autonomous intelligent agents going out to find new documents in the
World-Wide Web (Simons et al., 2000). The combination of both actively and passively
collecting documents in one stream is also possible. The display module is responsible
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WWW

Newswire

?

UserCollection Selection Display

Feedback

Figure 1.2: Sub-tasks of a filtering process.

for the interaction between users and the system. It not only displays the selected docu-
ments, but it interacts with users and accounts for their reactions on the presented output
to guide the collection and selection processes. In this study, we focus our attention on
the selection module. The collection and display tasks are already rich research areas in
their own right, and will be considered here as black-boxes, where the former provides
a document stream and the latter provides relevance judgments for some of the selected
documents.

The selection module does the actual filtering of the collected documents, selecting
the relevant ones or rejecting the non-relevant ones, with respect to a topic. It uses some
internal representation for documents and topics, called profiles . Representation allows,
by means of a filtering function, the calculation of the aboutness of each document with
respect to a topic, so as to decide whether to select or reject it. Two sources of deducing
representations have been dominating the research in filtering, distinguishing two types
of filtering: collaborative (or social), and content-based (or cognitive) (Denning, 1982;
Malone et al., 1987).

In collaborative filtering, documents are represented by annotations made by their
prior readers. By exchanging these annotations, groups of users with shared interests
can automatically be identified. Collaborative filtering can provide a basis for selection
of documents regardless of whether or not their content is represented. Content-based
filtering on the other hand assumes that each user operates independently . There is no
exchange of information of any kind, thus document representations can only be derived
from their content. Of course, both approaches may be combined in such a way that
annotations and content both contribute to estimate the aboutness. In this study, we
are concerned with content-based filtering.

Filtering systems can exploit the long-term nature of topics to improve the filtering
model over time. A system may continuously monitor the stream, accumulating different
kinds of statistical data, and using them to produce better representations for profiles.
Moreover, as documents are filtered for a topic, the user may give relevance judgments for
some of the selected documents. Judged documents can be used to adapt the topic profile
and the filtering function. The choice between exploiting the long-term nature of topics
or not, distinguishes between two types of systems. Systems that do not change the way
they filter over time are called batch1 or non-adaptive. Single-pass filtering systems that
alter their filtering model in response to the history are called adaptive.

1Adhering to the TREC jargon (Chapter 5).
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1.3 Filtering vs Retrieval

Information retrieval (IR), and especially text retrieval, is an information seeking process
with an extensive research heritage. Given the shared similarities between many infor-
mation seeking processes, the filtering task has been viewed as a special retrieval case
and treated by retrieval techniques. In some cases, the filtering and retrieval tasks have
even been seen as “two sides of the same coin” (Belkin and Croft, 1992). As a result,
qualitative differences of filtering are usually overlooked. In Table 1.1, we point out a
few differences in the nature of data involved.

retrieval filtering
information request short-term long-term
information sources static dynamic

comparison ranking of documents binary decision
feedback usually one-time repeatedly

Table 1.1: Main differences between retrieval and filtering.

Filtering systems can exploit evidence about the relatively long-term interests of a user
to develop more complete and precise descriptions of the request. The repeated feedback
of information about relevance may result in better representations of the information
request, achieving better filtering effectiveness.

The dynamic nature of sources can be seen as documents associated with their time of
arrival, i.e. a stream of documents. At any point in time, there are documents that have
not been seen, thus judgments can only be made based on documents already seen by
that time. Furthermore, since documents arrive one at a time, document representations
should be built on-the-fly .

The dynamic nature of sources differentiates, moreover, the way of comparing them
to requests. Where retrieval systems return a ranked list of documents (most relevant
first, least relevant last), filtering systems should make a binary decision whether to
accept or reject an incoming document as it arrives. Moreover, while retrieval is about
selecting relevant documents, filtering is not only about selecting but it can also be about
eliminating non-relevant documents from a stream. Despite these differences filtering has
still a lot to borrow from retrieval.

1.4 Themes and Structure of this Thesis

This thesis is a collection of the work that the author has accomplished in the context
of the Profile project (Simons et al., 2000). Profile was a multi-disciplinary project
aiming at the development of a pro-active filtering system, as an effective intermediary
between users and information sources. It has been essentially a research project, giv-
ing the opportunities to elaborate on different problems within the general context of
information filtering.

Two main themes have been considered by the author, splitting this thesis in two
distinct parts which may be read independently:
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Document Filtering. The traditional view of filtering as a special case of the retrieval
task, we believe, is not appropriate.

In Chapter 2, we view filtering as an adaptive and temporally-dependent process.
A process that, in contrast to traditional retrieval, takes the dynamic nature of
relevance and its temporal aspects into account. The chapter is a theoretical study
that has resulted from the bottom-up approach we have followed to deal with
filtering during the last few years. Guided by the experiments we have performed
— in the context of the TREC-9 filtering tasks and elsewhere — we formulate what
we believe is important for effectiveness as well as for efficiency. The chapter results
in a coherent view on filtering, but the ideas also apply to other information seeking
tasks that may involve temporally-dependent data. In Chapter 3, we investigate
the use of time distributions . Our main hypothesis has been that data which occur
uniformly in time give better predictions of the future, thus are more valuable. We
test this idea in an indexing context by introducing a novel term selection method,
namely the term occurrence uniformity (TOU). In Chapter 4, we provide a novel
thresholding method, namely the score-distributional (S-D) threshold optimization.
Thresholding is required in order to force a binary decision on retrieving a document
or not. The problem is important since it has proved critical for the effectiveness
of classification tasks (Lewis, 1995a; Hull and Robertson, 1999; Robertson and
Walker, 2000).

The total effort put into these directions has resulted in a number of publications
(Arampatzis et al., 2000c; Arampatzis and van Hameren, 2001; Arampatzis and
van der Weide, 2001), and in the development of the prototype FilterIt system
(Arampatzis et al., 2000a). The system has readily demonstrated, in the context of
the TREC-9 filtering track (Chapter 5), the feasibility of the ideas and the benefits
that they provide to effectiveness. For most of the techniques described in the
aforementioned chapters, we pay special attention to practical implementational
aspects, such as that of incrementality .

Representation of Textual Information. What is a suitable and effective represen-
tation for information seeking tasks has been a rather long-standing issue. In its
simplest form, representation takes the form of bag-of-words , while the more com-
plicated and ambitious ones have not yet established a clear benefit.

In Chapter 6, we discuss linguistically motivated indexing (LMI) approaches. We
give an overview of the most important attempts to break out of the bag-of-words
representations. Guided by the failures and successes of previous approaches, we
provide an LMI scheme which deals with language in a coherent and compact way.
Chapter 7 describes our experimental work in using linguistic resources and pro-
cessors for information seeking tasks. It sets out to evaluate parts of our proposed
LMI scheme.

This line of research has also resulted in a number of publications (Arampatzis
et al., 1997a; Arampatzis et al., 1997b; Arampatzis et al., 1998; Arampatzis et al.,
2000b; Arampatzis et al., 2000d).
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An implicit contribution of our work is that we evaluate our ideas mainly in relevance
feedback environments, i.e. environments which involve training data.

The approach to both themes has been theoretical as well as experimental. For
readability reasons, usually we provide within the main part of this book only the final
formulae and representative samples of empirical evaluations; long proofs, raw experi-
mental results, and additional plots can be found in the appendices. This thesis does not
provide an extensive review of all literature in the field; we review only the most related
research on the way, and as far as it is necessary for assimilating our work.

The choice of the underlying retrieval model has been quite traditional. We have
used the vector space model , for its ease of understanding and implementation, and we
have built upon it. The same holds for term weighting schemes; we have merely applied
existing and proven ones. We believe, however, that these choices do not invalidate
our evaluations, and our results are likely to be reproduced using other settings. Our
main test-bed — retrieval model, effectiveness measures, and test data — is described
in Appendix A; the reader familiar with traditional choices need not read it. Special
modifications, settings, and novel techniques are reported where they apply.



Chapter 2

Filtering as an Adaptive and
Temporally-dependent Process

The filtering task has traditionally been defined as a special case of the information re-
trieval task, and undeniably, it can be performed by applying retrieval techniques. This
theoretical study summarizes our experiences in viewing filtering as an adaptive and
temporally-dependent process. A process that, in contrast to traditional retrieval, takes
into account the dynamic nature of relevance and its temporal aspects. We investigate
the nature of user interests, formulate useful types of adaptivity, and discuss the effec-
tiveness of those types in relation to user interests. To deal with drifts, we introduce
the notion of the half life of documents. Furthermore, we discuss potential dangers for
effectiveness such as selectivity traps. We pay special attention to practical efficiency
issues by discussing term selection and incrementality. This chapter is based on our work
previously published in (Arampatzis and van der Weide, 2001).

2.1 Introduction

Information retrieval, and especially text retrieval, is an information seeking process with
an extensive research heritage. Given the similarities shared between many information
seeking processes, the filtering task has been seen as a special retrieval case, treated
by retrieval techniques. In some cases, the filtering and retrieval tasks have even been
seen as “two sides of the same coin” (Belkin and Croft, 1992). We do not question the
similarity of the tasks; the filtering task can indeed be performed with slightly modified
retrieval techniques. However, we point out a few important differences in the nature of
data involved. Taking these differences into account is beneficial for effectiveness.

This study is influenced by the work of several researchers. We have found especially
useful the conceptual framework for filtering described in (Oard and Marchionini, 1996),
and the adaptivity issues discussed in (Williams, 1991). We additionally refresh and
revise the most important parts of our work described in (Arampatzis et al., 2000c;
Arampatzis et al., 2000a).
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In the following sections, document filtering systems are addressed by:

• classifying user interests with respect to how the idea of relevance changes over
time (Section 2.2). As we will see, relevance may be disturbed by user-triggered
and world-triggered factors.

• classifying user interests with respect to the occurrence patterns of relevant docu-
ments in time (Section 2.3). We introduce a measure which enables the temporal
classification of interests. Moreover, we outline how such information may be used
in filtering.

• classifying forms of adaptivity (Section 2.4).

• discussing implementation issues, such as incrementality (Section 2.5).

• discussing the performance of different forms of adaptivity on different kinds of user
interests (Section 2.6).

• discussing term selection for adaptive filtering tasks (Section 2.7).

• discussing potential dangers for effectiveness, such as selectivity traps (Section 2.8).

This study is the result of the bottom-up approach we have followed to deal with filtering
in the last years. Guided by the experiments we have performed — in the context of the
TREC-9 adaptive filtering tasks and elsewhere — we will formulate what we believe is
important for effectiveness, as well as, for efficiency.

2.2 A Relevance Classification of Topics

A filtering task begins with a user interest and a stream of documents. With respect to
a stream of N documents, and assuming binary relevance, we will define as topic T the
substream of all documents relevant to the user’s interest, e.g., T = D1, . . . , Dn, n ≤ N .
This definition of topic quantifies the user interest in terms of the document stream.
We will assume that the topic is persisting in the stream, that is, as the stream grows
(N → ∞) the topic grows as well (n → ∞).

Adopting this point of view, only 2N different topics may be distinguished for a
certain N , however, an infinite number of interests may be thought of. When two or
more different interests translate to the same substream of relevant documents, we will
not distinguish between those interests; the idea is that you cannot get anything more
than what is actually present in the stream.

Let us assume an abstract distance measure d(Di, Dj) ∈ [0, +∞) between any two
documents Di, Dj. Small distance values mean that two documents are about similar
subjects . We will also introduce a fuzziness parameter ε which denotes the maximum
distance allowed for two documents to be considered as being about the same subject.
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A topic T may be classified with respect to the values of the distance d(Di, Dj), for
all relevant documents Di, Dj, as n → ∞:

• stable: All distances between the documents are less than or equal to ε:

d(Di, Dj) ≤ ε , ∀i, j .

• drifting: All distances between consecutive documents are less than or equal to ε,
but some distances of non-consecutive documents are not:

d(Di, Di+1) ≤ ε , ∀i

and

∃i, j : d(Di, Dj) > ε .

• multimodal: There are consecutive document distances greater than ε, but the
topic can be broken down to a finite number of k stable disjoint subtopics:

∃ stable T1, . . . , Tk : T = ⊕iTi

and

d(Di, Dj) > ε , ∀Di ∈ Tl , ∀Dj ∈ Tm , ∀l ̸= m ,

where ⊕ means that Ti’s are exclusive partitions of T : they have no documents in
common but their union amounts to T .

• vagrant: the same as multimodal, but the number k of subtopics is infinite.

• white noise: the same as vagrant, but k → ∞ faster than for vagrant topics.

This classification is rough, but sufficient for our analysis. A topic may exhibit in reality
a more complex behaviour in time by switching between two or more of the above types.
For example, a topic is at first stable, but then starts drifting; or even a subtopic Ti of a
vagrant topic is drifting.

Note that the fuzziness parameter ε determines the limits of the classes: a very large
fuzziness will classify all topics as stable, while an infinitesimal one will classify everything
as white noise. However, for a given reasonable fuzziness, what classifies a topic under
one of the above categories depends on user-triggered and world-triggered factors.

User-triggered factors are related to whether a user interest shifts in time, and how
it shifts. World-triggered factors are independent of shifts in user’s interest. They are
directly related to the nature of the interest with respect to the real world. The world
may produce considerably different but still relevant documents.
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2.2.1 User-triggered Shifts in Interest

A user who sticks to her initial request has a stable interest . However, the user interest can
also deviate over time. For instance, as the user reads more and more documents about
the initial request, she wants to know more specific or general information, or slowly
becomes interested in a similar subject which is referred to in the documents already
retrieved. In this case, the user has an drifting interest . (Allan, 1996) has demonstrated
that such drifts can be handled readily by phasing out old context.

A multimodal or vagrant interest usually arises when the user does not exactly know
what she is looking for, consequently the interest is vaguely formulated. She will probably
find different kinds of documents relevant, in the search for her real interest. The interest
may switch between closely related — specific or relatively random — domains.

We will assume here a rational user who does not abruptly change her mind. An
abrupt shift should be considered as a different interest and be treated as a new filtering
process. Thus, white noise behaviour can not arise for user interests in filtering; it rather
corresponds to user interests in traditional retrieval tasks.

2.2.2 World-triggered Shifts in Document Content

Consider filtering an interest about HIV treatments . Over the years, treatments have
changed; new and more effective ones have been slowly developed, while the less effective
ones have been fading out. In such cases, where the contents of relevant documents slowly
change in time, there is content drift .

Document contents can show multimodal or vagrant characteristics. Multimodality
arises when the interest is such that it combines two or more stable but relatively distant
interests, for example, operating systems AND computer architecture. The contents of
relevant documents will switch between the two different subjects at irregular intervals.

A special kind of vagrancy arises in what we call event-driven interests. As an example
consider the interest terrorism. Such an interest is driven by real-world events which can
be relatively different and unexpected, for example, NYC subway bombing or flight TR-
304 hijacking . An important event is usually associated with bursts of relevant documents
for some period of time. Then, documents about the subject tend to disappear completely
from a news stream, while some other (relatively random) terrorist event may happen.

2.2.3 Relevance

User interest shifts and document content shifts are related in the sense that the idea
of relevance changes. Whether a shift comes from the user or the world side is not of
importance. What is important is that future relevant documents will be different than
the ones of the past. Consequently, we will talk about relevance shifts, irrespective of
who or what causes them.

The user and the world can both be viewed as sources of disturbances for relevance.
In this respect, the source with the highest entropy defines the class of the topic. For
example, a stable user interest but vagrant contents in relevant documents results in a
vagrant topic.
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Multimodal Vagrant White Noise

DriftingStable

Figure 2.1: A relevance classification of topics.

In summary, an interest is what a user has in mind. An interest may be satisfied
by a number of (finite or infinite) subjects. A document contains a few subjects. The
same subject may spread across documents. A topic is the substream of all documents
containing subjects that satisfy the interest at the time of their arrival. With respect
to how relevance changes, i.e., how the contents of relevant documents change in time,
topics may be classified as shown in Figure 2.1. The figure shows possible trajectories of
relevance in the document space.

The classification of topics we have just considered is related to the types of adaptivity
we will introduce in Section 2.4. In Section 2.6 we will discuss this relationship. First we
will attempt another classification of topics.

2.3 A Temporal Classification of Topics

The classification of topics considered in the previous section is purely based on relevance
aspects. We have considered how relevance changes in the ordered set (stream) of a topic’s
relevant documents. In this section, we consider the actual times of arrival of relevant
documents. The qualitative classification we suggest consists of the following classes:

• simply periodic: Single relevant documents arrive at approximately constant
time intervals.

• random or uniform: Relevant documents arrive at irregular intervals.

• periodically clustered: Some relevant documents arrive at regular time intervals.

• aperiodically clustered: Bursts of relevant documents arrive at irregular time
intervals.

Figure 2.2 depicts the above occurrence patterns. This classification of topics is rather
orthogonal to the relevance classification considered in Section 2.2.
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Figure 2.2: A temporal classification of topics.

Next we will see how uniformity may be quantified. The measure we will introduce
enables the temporal classification of topics as discussed above. Then we will briefly
discuss the implications that such a classification has for filtering effectiveness.

2.3.1 A Measure for Uniformity

Let us consider a normalized time-line [0, 1], where the initiation of a filtering task is
located at 0 and the present time is at 1. Each document occurrence can now be repre-
sented by a point in that interval, and the occurrence pattern of a topic of length n by
a list of points x1, . . . , xn. Measures of non-uniformity of point-lists are called discrep-
ancies . Such measures have the structure of statistics to measure the overall difference
between an estimated probability distribution and a conjectured probability distribution.

A list of n occurrence points can be converted to an unbiased estimator Sn(x) of
the cumulative distribution function of the probability distribution from which it was
drawn: Sn(x) is the function giving the fraction of occurrences to the left of x. The
cumulative distribution function of the uniform distribution is PU(x) = x. Different lists
of points have different cumulative distribution function estimates. However, all cumu-
lative distributions agree for x = 0 and x = 1 where they are zero and one respectively.
As a consequence, it is the behaviour between 0 and 1 of their cumulative distribution
functions that distinguishes distributions.

There are many statistics to measure the overall difference between two cumulative
distributions. We have chosen a variant of the generally accepted Kolmogorov-Smirnov
(K-S) test , namely Kuipers’ statistic (Kuipers and Niederreiter, 1974), which is the sum
of the maximum distances of Sn(x) above and below PU(x):

Vn = D+ + D− = max
0<x<1

[Sn(x) − PU(x)] + max
0<x<1

[PU(x) − Sn(x)] . (2.1)

The method is demonstrated in Figure 2.3.
This statistic guarantees equal sensitivities at all values of x, in contrast to the original

K-S test which tends to be more sensitive around the median value where PU(x) = 0.5 and
less sensitive where PU(x) is near 0 or 1. It is also invariant under re-parameterizations of
x and shifts on the circle created by gluing together points zero and one of the time-line.
K-S-like statistics have a computational complexity linear to n. More details on how to
compute them can be found in (Press et al., 1992).
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Figure 2.3: Kuipers’ discrepancy test Vn = D+ + D−.

Vn takes values in [ 1
n , 1]. Figure 2.4 shows the empirical probability densities of V10

and V100 for 20.000 pseudo-random occurrence patterns. Values close to 1/n are obtained
for simply periodic occurrences. Truly random patterns get slightly larger values; how
much larger depends on the number of occurrences n, as it is shown in Figure 2.4. Values
of Vn close to 1 correspond to serious clustering of the occurrences in the timeline.
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Using Kuipers’ statistic, topics may be quantitatively classified into the classes defined
at the beginning of this section. We simply split the range of values [ 1

n , 1] of Vn into four
intervals. These intervals are determined by three values x1, x2, and x3. For a certain n,
we define x1 and x2 through the equations

P (Vn < x1) = p and P (Vn > x2) = p , (2.2)

for some small p, e.g. p = 1%. For a certain p, x1 and x2 may be obtained from standard
tables with the confidence levels of the statistic, e.g. from (Knuth, 1981). Moreover, we
define x3 as some number between x2 and 1. its exact value is a rather subjective matter
and it should be justified empirically.

2.3.2 An Example of Topic Uniformity

Table 2.1 gives the uniformity of occurrences of relevant documents in time for categories
of the Reuters-21578 corpus (Section A.6.1). Only the categories with at least 100 relevant
documents in the training part of the stream are presented.

topic n = training docs test docs 1 − Vn

earn 2861 1087 0.813
acq 1648 719 0.827

money-fx 534 179 0.769
grain 428 149 0.881
crude 385 189 0.794
trade 367 117 0.739

interest 345 131 0.794
wheat 211 71 0.866

ship 191 89 0.859
corn 180 56 0.831

money-supply 132 34 0.815
dlr 131 44 0.581

sugar 125 36 0.815
oilseed 124 47 0.824
coffee 111 28 0.806

gnp 101 35 0.771

Table 2.1: Uniformity of Reuters-21578 topics.

The training stream covers a period of 40.4 days, calculated from the time of arrival
of the first training document of any topic to the first test document. The rightmost
column gives the topic occurrence uniformity , or just topic uniformity), in the training
stream. The closer this number is to one, the more constant the delivery rate (relevant
documents per time unit) for that topic. Obviously, documents about dlr (dollar) arrive
in bursts, a possible consequence of temporal events concerning e.g. dollar’s exchange
rate drops in Tokyo.

Figure 2.5 gives the temporal histograms of document arrivals for topics dlr and
money-supply . We can see that many of dlr documents arrive in the period of days
25 and 37, while the document distribution in the time-line for topic money-supply is
more uniform. A comparison of their cumulative distribution functions to the cumulative
distribution function of the uniform distribution is given in Figure 2.6.
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Figure 2.6: Cumulative distribution functions of document arrivals for 2 topics.

The 2-day gaps (e.g. days 10-11, 17-18, etc.) in money-supply correspond to weekends
where no economic news is made. Note that this match is not exact since the days in
the plots do not correspond to real days; they are successive 24-hour intervals taken
from the arrival time of the first document of the training stream. Considering also the
different closing times of international stock markets, it should explain why few economic
documents seem to occur in weekends, especially for dlr . We will report experiments with
time distributions on Reuters in Chapter 3.

2.3.3 Using Temporal Information

We will outline how information about the occurrence pattern of a topic in time may be
used for filtering. Let us consider again a stream of N documents and a topic T of length
n. The density of relevant documents in the stream for T is

ρ =
n

N
. (2.3)

If the topic occurs randomly in the stream, then ρ may be interpreted as the probability
that the next arriving document will be relevant. However, high topic uniformity is not
the case in general. Periodic and clustering characteristics introduce uncertainty into
the interpretation of density as probability. The uncertainty decreases with the topic
uniformity.

Vn, ρ, and periodicity information may provide means for filtering irrespective of
document content. ρ can be seen as the expected value of the a priori probability of
relevance P (rel), i.e., E(P (rel)) = ρ. The variance of the distribution of P (rel) in time is
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some increasing function fn of Vn, i.e., V(P (rel)) = fn(Vn). Periodicity information may
give an estimate of P (rel) that corresponds to a certain time-point t:

P (rel|t) = E(P (rel)) + g(V(P (rel)), t) , (2.4)

where g is some function that accounts for periodicity and/or temporal clustering.
In principle, one could blindly retrieve documents by sampling the document stream

with probability P (rel|t). P (rel|t) is usually small, since it depends on ρ which is small
because there are usually many more non-relevant than relevant documents in a stream.
However, depending on the temporal nature of the topic, P (rel|t) may peak at usable
values. In any case, P (rel|t) may be seen as additional evidence that together with
P (rel|D) (the probability of relevance estimate based on document content) contributes
to the decision of whether to select a document or not.

What we have just described is rather crude, and we do not claim that this is the
best way to deal with the temporal aspects of filtering. Summarizing the problem, the
questions are: How can P (rel|t) be estimated for the history? How can one extrapolate
P (rel|t) for the future? What is the appropriate way to combine the two pieces of evidence
P (rel|t) and P (rel|D)? In fact, the tools are already there; here are a few keywords:
Fourier analysis , time-series analysis , or more contemporary and geometrically, phase
space reconstruction and Poincaré sections.

2.4 A Temporal Classification of Adaptivity

Disregarding the actual techniques used for creating or altering a filtering model, filtering
systems may be classified according to the temporal location from which they obtain the
information for doing that. To reach such a classification we will follow an approach
similar to the one in (Williams, 1991).

Let us consider a system that is initiated at time 0 and the current time is t; thus the
system has a history of length t. The importance of an event that happened at time x
within this history can be modeled by a history weight function H(x, t) with the following
property: ∫ t

0

H(x, t) dx = 1 , ∀t > 0 , (2.5)

that is, the area below the H(x, t) curve amounts always to 1 for all t. For instance, a
history weight function that weighs equally all history is:

H(x, t) = 1/t . (2.6)

Irrespective of its form, the H(x, t) curve is characterized by its mean value, which is
mathematically defined as:

H̄(t) =

∫ t

0

H(x, t)x dx . (2.7)

It will be useful for this analysis to define the distances a(t) and b(t) of this mean from
the beginning and the end of the history respectively:

a(t) = H̄(t) , b(t) = t − H̄(t) . (2.8)

Figure 2.7 visualizes all the above so far.
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Figure 2.7: An example of a history weight function.

Adaptive systems may be classified according to the behaviour of H̄(t) as the history
grows, that is t → ∞. We distinguish between the following classes of adaptivity:

• non-adaptive:

a(t) = 0 , b(t) → ∞ .

• locally adaptive:

a(t) → ∞ , b(t) < c ,

where b(t) < c means that b(t) is bounded by a constant c as t → ∞.

• asymptotically adaptive:

a(t) → ∞ , b(t) → ∞ .

Non-adaptive systems do not use the history whatsoever. Asymptotically adaptive sys-
tems spread the emphasis over the whole time-line in such a way that the mean H̄ is not
bounded. An example of an asymptotically adaptive system is a system which weighs all
events of the past equally, like one with a history weight function of Equation 2.6.

Locally adaptive systems rely most heavily on data collected in the recent past, de-
grading the value of the early past as the history grows. A minimum amount of emphasis
is always given to a bounded length of the recent history, and the rest of the emphasis
is spread over the rest of the history. A special case of local adaptivity shows up in
windowed locally adaptive systems which consider only the recent history within a fixed
time window. A typical history weight function of this form is:

H(x, t) =

{
1/W , if t − W ≤ x ≤ t .
0 , if 0 ≤ x < t − W .

(2.9)

where W is the window size.
In Section 2.6, we will discuss the effectiveness of the aforementioned types of adap-

tivity in relation to the nature of user interests. First, turning the theory into practice,
we will discuss some practical issues in implementing adaptivity.
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2.5 Incrementality

Our discussion so far has assumed that the whole history and an unlimited amount of
memory and computational power are available at any point in time. However, practical
models in order to be feasible should satisfy the following requirements:

• use a fixed finite amount of memory.

• process the available history in a fixed finite number of computations.

These requirements imply that only a finite portion of the history should be retained,
and that models should be implemented incrementally .

For the sake of the discussion, let us assume a simple filtering model that records fre-
quencies of certain features occurring in relevant documents, in order to make predictions
of relevance in the future. Incremental asymptotic adaptivity in such a simple model can
be achieved by accumulating the values of the occurring features in an array of registers;
one register per feature. Of course, there is another minor concession we make here,
that is to allow registers of infinite width. Double precision arithmetic approximates
this assumption sufficiently; in any case, all accumulators can be divided by a constant,
whenever a value approaches the maximum width of the registers, without invalidating
the model.

A locally adaptive system may be implemented in a similar manner by additionally
maintaining a document buffer of some length W . Every time a new document arrives,
registers accumulate the values of the occurring features, but they are also decremented by
the values of features which occur in the oldest document in the buffer. This approach is
incremental, but it has two disadvantages: it uses more memory because of the document
buffer, and it discards all information beyond what is in the buffer at any time.

An alternative approach, which uses all information but weighs it appropriately, is
to perform a decay operation. We define the half life h of a document as the age that a
document must be before it is half as influential as a fresh one. If a document Di has
arrived at time ti and the current time is tn, the history weight of the document is:

li = exp

(
ln 0.5

h
(tn − ti)

)
, (2.10)

where tn, ti, and h are expressed in the same units, e.g., months. Figure 2.8 demonstrates
the decay operation.

The decay operation can be performed incrementally, and it does not require any
document buffers. It is easy to show that when Dn arrives, all accumulators have only
to be multiplied by ln−1 before the new values of the features occurring in Dn are added.
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Figure 2.8: Decay and half life.

2.6 A Comparison of Adaptivity

Non-adaptive systems will perform reasonably as long as the initial topic representation
is complete and precise and the topic is stable. However, the initial representation is
bound to be incomplete and imprecise, due to two factors:

• the incapability of users to verbalize their precise interest,

• the weaknesses of the representation scheme itself.

Consequently, locally and asymptotically adaptive systems present more interesting fea-
tures.

Locally adaptive systems use more recent information and they are capable of re-
sponding to relevance shifts quickly. Therefore, they can track a drifting topic. However,
the disadvantage of them is that they will never converge to a stable topic. Asymptoti-
cally adaptive systems have the ability to converge to a stable topic. The choice between
a locally or asymptotically adaptive system should be made on whether responsiveness
or convergence is more important.

Implicit in the idea of tracking a topic using the history is that the history gives an
indication of where the topic may currently be located. A fundamental trade-off exists
in tracking topics. While it is advantageous to use as many instances of the history as
possible to estimate accurately a topic’s position, it is disadvantageous to use outdated
instances. Relevant instances of the far past indicate the position of the topic at the time
they occurred and they do not reflect the topic’s current position. Thus they are less
informative than recently occurring instances. A practical solution to this problem is to
estimate the speed of a drifting topic and use this estimation to choose an appropriate
window size W or half life h.
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In the TREC-9 filtering task, the user requests were given as being stable, suggest-
ing that an asymptotic behaviour would be more proper. However, the test stream
(OHSUMED) consists of documents collected in a period of five years and it is likely
that there are document content drifts. As an example, think of new treatments de-
veloped for the same sickness. Indeed, our experiments have shown that the average
effectiveness (as this is measured by T9U averaged over all topics) peaks for a half life
value of around 4 years (Arampatzis et al., 2000a). Analysis per topic, however, has
revealed that effectiveness is optimal at a considerably different half life value per topic.
We will report these experiments in Chapter 5.

As a first step in optimizing h per topic, we define the effective relevance velocity v
of a topic as:

v =
d(D1, Dn)

n − 1
, v ∈ [0, ϵ] . (2.11)

Note that the definition considers only the initial and the last position of relevance,
and discards the trajectory in between. Moreover, the velocity is defined with respect
to the number of steps taken, rather than the actual time. Obviously, h and v are
related in an inverse way, however, their more precise relationship should be established
experimentally.

The types of adaptivity we have defined are capable of dealing with stable and drifting
topics. The question of how multimodal or vagrant topics should be treated still remains.
A solution would be to model their subtopics separately. In the multimodal case, all
subtopics may be assumed stable and be dealt with by asymptotic adaptivity. However,
it may be more effective for the vagrant case to assume that subtopics are drifting. We
should remind the reader that the poles (the gray circles in Figure 2.1) of a vagrant topic
may not be revisited by relevance in the future. Thus, a locally adaptive system would
eliminate such old outdated context. Next, we will discuss an alternative way of dealing
with multimodality and vagrancy.

2.7 Stabilizing Multimodality or Vagrancy

The solution of modeling subtopics separately is not practical, although it may be ef-
fective. A more practical solution is to, first, re-construct the document space so as to
bring the different poles as close together as possible, and then assume a larger fuzziness
parameter so that the topic may be considered as stable or drifting.

Transformations of the document space may be performed by different techniques,
e.g. feature selection (Yang and Pedersen, 1997), latent semantic indexing (Deerwester
et al., 1990), or via the use of kernel functions of support vector machines (Schölkopf,
1998; Dumais, 1998). Roughly speaking, the idea consists of removing non-informative
features (dimensions) and/or constructing new features by combining lower level features
into higher-level orthogonal dimensions. We will refer to all methods for transforming
a document space as feature selection. Two example transformations are depicted in
Figure 2.9.
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Figure 2.9: Stabilizing multimodality or vagrancy by re-constructing the document space.

The first transformation shows how poles may be brought together by eliminating a
dimension. The second transformation shows how unwanted areas of the document space
may be moved away from the topic area by adding a dimension (a different dimension
than the one eliminated before). By selecting an optimal set of features in this way and
by increasing the fuzziness constant (e.g. to ε′) if necessary, multimodal or vagrant topics
may be treated as stable.

Traditional feature selection schemes usually favour features which occur frequently in
relevant documents but infrequently in the rest. In order to eliminate multimodalities or
vagrancies, however, it is also important that a feature occurs across poles; these features
bring the poles together. High frequency in relevant documents implies that a feature
may also occur across poles, but not necessarily.

The uniformity measure we have introduced in Section 2.3.1 may be recruited once
more. Based on the hypothesis that features which occur uniformly in time are more
valuable than others, we have introduced in (Arampatzis et al., 2000c) a novel feature
selection method, namely the term occurrence uniformity (TOU). A small experiment has
neither proved nor disproved the hypothesis. The results, however, have been promising,
since the method seemed as effective as other powerful term selection methods such
as document frequency thresholding1. The approach taken has been a brute-force one;
candidate features were ranked simply according to their uniformity. A wise integration
of a TOU method and some other powerful time-disregarding term selection method may
combine the benefits of both approaches. We will report these experiments in Chapter 3.

A fundamental difference between adaptive filtering and classification (non-adaptive)
systems is that in filtering the document space may be reconstructed several times in or-
der to optimize effectiveness and efficiency. On-the-fly feature selection schemes should
be applied with respect to possible relevance shifts. Moderate cutoffs will be more ap-
propriate. Due to the fixed-memory model required for practical systems, every time a
cutoff is applied, some low-frequency features will be irretrievably lost. Relevance drifts
are associated with frequency increments of previously low-frequency features. Therefore,
applying repeatedly aggressive cutoffs will not allow for the tracking of relevance drifts.

1Document frequency thresholding has proven to be more than just an ad hoc approach for feature
selection, and quite powerful in text categorization environments (Yang and Pedersen, 1997).
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2.8 Selectivity Traps

The output of traditional retrieval systems is usually a ranked list of documents in order of
decreasing scores (given by the probability of relevance or some other similarity measure)
with respect to a query. In binary classification tasks, like document filtering, a decision
should be made for every document as to whether it belongs to a given class or not.
Thus, decisions such as where to “cut” a ranked list have to be made automatically. In
some cases, decisions are required to be made as soon as a document arrives, therefore
ranked lists are not even possible.

These considerations suggest the thresholding of document scores. We will expand
on thresholding in Chapter 4. Thresholding has proven to be critical for classification
effectiveness and has revealed the twin danger — unique to such environments — of
selectivity traps : setting a threshold too high retrieves nothing at all, while setting it too
low retrieves far too many documents (Robertson and Walker, 2000). We will call these
traps overselectivity and underselectivity , respectively.

Bad thresholding, however, is not the only cause of falling into selectivity traps.
Another cause may be training. Usually, a system is trained on its history, i.e. it is
trained to do past tasks, and then it is applied to future tasks. Consequently, the success
of training depends on whether the lessons learnt from the past apply to the future. The
most obvious reason why this might not hold is that a topic is drifting faster than a
system is capable of tracking. We will call this trap intractability .

Another danger of training is what is widely known as overfitting a topic profile on
history data. For example, putting too much effort into finding the perfect profile for the
history may discover and emphasize accidental characteristics (e.g. typographical errors in
relevant documents) that do not generalize into the future. Overfitting usually manifests
itself as overselectivity. At the other end of the spectrum lies underfitting , which leads to
underselectivity. Available training data may not be sufficient for training, subsequently
the topic profile is far from convergence describing a bit too much of the document space.
Table 2.2 summarizes the possible traps, their causes, and their criticalities for adaptive
filtering.

underselectivity overselectivity intractability
causes – underfitting – overfitting – too fast drift

– too low threshold – too high threshold
criticality not too dangerous dangerous but recoverable unrecoverable

Table 2.2: Selectivity traps.

In adaptive filtering, overselectivity is a more dangerous trap than underselectivity.
Adaptivity in filtering counts on the system to keep retrieving documents so it can
continuously refine the filtering model. In this respect, adaptivity can pull the system
out of an underselectivity trap by improving the topic profile and increasing the threshold.
On the other hand, if at some point in time the system is led into an overselectivity trap,
it will not retrieve any documents on which it can refine the topic profile and threshold,
which leads to “silent” profiles. However, such a situation may be recoverable by the use
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of special mechanisms; the questions are how one can detect and fix an overfitted topic
profile, and how can one be sure that the threshold is too high (as opposed to there just
being no relevant documents to be retrieved).

In the long term, the intractability trap has essentially the same effect as overselectiv-
ity. Even if a profile still retrieves non-relevant documents when it has lost the relevant
document area, these non-relevant documents only give an indication of the area that
the estimation of relevance should move away from, without specifying an alternative
direction. The profile will eventually fall “silent”, because of adaptivity responding by
increasing the threshold. We prefer, however, to view intractability as a separate trap
from overselectivity, since its cause is different and the situation is rather hopelessly
unrecoverable.

One should keep in mind that adaptive filtering is an especially sensitive task. What
makes it so sensitive is that the system is provided with absolutely no relevance feedback
for non-retrieved documents. Any relevance statistics collected in this way are bound to
be partial in the sense that they do not represent a sample of the whole document space,
but a sample of the retrieved space, therefore they may be highly misleading. Compare
this situation to other adaptive tasks such as adaptive data compression, where the
current frequencies of all symbols in a channel are known (Williams, 1991).

2.9 Summary

This chapter has summarized our experiences in viewing filtering as an adaptive and
temporally-dependent process. All models and ideas we have described are the result of
our experimental work in the context of the TREC-9 filtering task (Arampatzis et al.,
2000a) (Chapter 5), (Arampatzis et al., 2000c) (Chapter 3), and of previously unpub-
lished empirical investigations, and they result in a coherent view on relevance feedback
environments involving temporally dependent data.

We have presented a collection of ideas: a definition of the filtering task, a definition
of the topic, two orthogonal classifications of topics (one based on relevance and the
other on temporal aspects), a classification of adaptivity, and ways of using temporal in-
formation for selecting documents and for feature selection. Moreover, we have discussed
potential dangers such as selectivity traps, and paid attention to practical issues such as
incrementality. Our analysis has been rough, and we rather pose more questions than
provide answers.

The classical view of the filtering task as a special case of the traditional information
retrieval task, we believe, is not appropriate. In the last few years, there has been
increasing evidence that viewing filtering as an adaptive and temporally-dependent task
is beneficial for effectiveness. We are convinced that Information Retrieval in general
could benefit by taking the effect of adaptation and time into account. Our work so far
is fully described in this thesis and it has concentrated in working out these issues.



Chapter 3

Terms and Time Distributions

This chapter is based on our previously published work in (Arampatzis et al., 2000c). We
investigate the use of time distributions in information seeking tasks with relevance data.
Specifically, we introduce a novel term selection method, namely the term occurrence
uniformity (TOU), based on the hypothesis that terms which occur uniformly in time
are more valuable than others. Our current concern is filtering, but this line of research
can easily be extended to other retrieval tasks which may involve temporally-dependent
data.

3.1 Introduction

In information seeking tasks, documents and requests are represented by some character-
ization language. Representations (profiles) are usually made of bags of weighted terms
(also called features in document classification) derived from documents, and allow the
computation of similarity between documents and requests (Figure 1.1). In environments
involving relevance information, — e.g., routing, classification, or filtering — training
documents may be exploited to build better representations of the request, improving
effectiveness.

Let us concentrate on the filtering task. The process of constructing or updating topic
profiles from training data mainly consists of the following steps:

1. term selection (also called feature selection in classification environments): Even
moderate-sized training data may contain thousands of terms; nevertheless, not all
of them are suitable or necessary for representing an information request.

2. learning of term weights (or term weighting within profiles): Suitable terms
differ in their ability to represent the request, thus they have to be weighted ac-
cordingly.

The extensive research heritage in retrieval and the close similarity of filtering and re-
trieval tasks have led researchers to see filtering as an attractive application for techniques
that have been developed for retrieval (Belkin and Croft, 1992). As a result, qualitative
differences of filtering are usually overlooked.
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Current term selection and term weighting techniques have been originally developed
in the traditional retrieval context. These techniques mostly consider training data as
unordered sets of documents, totally disregarding their time of arrival. To our knowledge,
temporal information has not been widely explored in information seeking environments.
The most closely related subject is topic detection and tracking (TDT), i.e. the identifi-
cation of novel events in news streams (Yang et al., 1998; Allan et al., 1998).

In this study, we investigate ways of incorporating temporal information into pro-
file construction by assuming that terms which are distributed uniformly in time are
more valuable than others. In Section 3.2, we elaborate on this hypothesis. In Sec-
tion 3.3, we define a term occurrence uniformity measure. Section 3.4 describes the two
temporally-dependent term selection methods we have experimented with. Both of them
are compared to the baseline of selecting terms with document frequency thresholding .
Document frequency thresholding has recently proved to be more than an ad hoc ap-
proach and quite powerful for feature selection in categorization environments (Yang and
Pedersen, 1997). The experimental setup, properties of the dataset, and pre-processing
are discussed in Section 3.5. We give experimental evidence on how our proposed schemes
perform, in Section 3.6.

3.2 The TOU Conjecture

Term selection and term weighting techniques developed for retrieval tasks usually con-
sider document collections as unordered sets. Thus, the arrival time of documents in
filtering is totally disregarded when selecting and weighting terms using traditional re-
trieval techniques. Quoting David Hull from the TREC-7 Filtering Track (Hull, 1998):

“. . . no one has yet explored whether the distribution of a feature over time is
related to its usefulness as a discriminator for relevance.”

Changes in the distribution of a feature over time may indicate several things, for exam-
ple:

• A slow monotonic change in the occurrence rate of a term in relevant documents
may indicate a relevance drift (Section 2.2), e.g. a slow shift in the focus of the
user interest over time, or in the content of relevant documents. In either case this
means that arriving relevant documents tend to be different than training data, and
this difference is becoming greater over time. The quality of filtering will slowly
degrade, unless an adaptive filter responds adequately to these changes.

• A sudden increase of the occurrence rate of a term in relevant documents may in-
dicate a temporal event . For instance, NYC subway bombing is an event relevant
to the topic terrorism. Such important events are usually associated with bursts of
incoming documents for some period of time. A fast-responding filter, trained for
topic terrorism, could deceptively be adapted as a result of the very frequent occur-
rence of terms NYC and subway , which in general are not characteristic keywords
of terrorism.
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Drifts in user interest and document content are related in the sense that the idea of
relevance changes. We have introduced locally adaptive systems in Chapter 2, and we
will demonstrate in Chapter 5) how such drifts may be treated by a decay operation. In
this study, we assume that requests are stable (no shifts of any kind) but the topic has
temporal events.

3.2.1 Terms and Relevance

Let as consider a document stream, e.g. an electronic Newswire issuing, on a daily basis,
articles about politics, sports, and entertainment. Let us also assume a user with a certain
stable interest, e.g. football . With respect to their discriminating power for relevance,
terms may be classified as:

• relevant: they tend to occur in relevant documents, and are characteristic terms
of the topic, in the sense that they are not too ambiguous even when are taken
out of context, e.g. football, goalkeeper, world-cup, Hillsborough (the Hillsborough
disaster), Pelé.

• spurious: they tend to occur in relevant documents, but are not characteristic
terms of the topic. For example, the word dollars (think of dollars spent for player
transfers) occurs in different contexts as well, e.g. in politics (think of government
funds).

• indifferent: they tend to occur either too frequently in natural language in general,
or too infrequently in relevant documents. Common function words (stop-words),
e.g. and, the, must , belong in the former case. Stop-words have very low semantic
content and occur in almost all documents, thus are incapable of characterizing any-
thing in particular (non-discriminating). Conversely, words that occur too sparsely
to make any significant difference in classification (too discriminating), e.g. Jenkins
(the goal-keeper of Rising Hope FC) or misspelt words, belong in the latter case.

• non-relevant: they do not occur, in general, in relevant documents, and if they
do, their occurrence is infrequent and accidental, e.g. moonshine.

Let us expand a bit more on relevant terms, but now according to their distributions
in time. The temporal classification of topics into simple periodic, uniform, periodically
clustered , and aperiodically clustered , which we have introduced in Section 2.3, can be
applied to relevant terms as well. In this respect, world-cup is a periodically clustered
term, since every four years and for a period of a few weeks most games are played for
the world-cup. Hillsborough is an aperiodically clustered term since such disasters are
associated with unexpected bursts of relevant documents. We will not go, for now, into
a further distinction of terms into uniform or periodic. We will just combine the terms
that do not exhibit serious clustering in time (e.g. football or goalkeeper) under the class
of regularly relevant , while the rest as temporally clustered . Table 3.1 summarizes the
relevance classification of terms we have just considered.
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2-level classification of terms examples (for topic football)
relevant regular football, goalkeeper

temporally clustered world-cup, Hillsborough, Pelé
spurious dollars
indifferent sparse Jenkins

common function and, the, are, must
non-relevant moonshine

Table 3.1: A classification of terms according to their discriminating power for relevance.

Training data may contain too many terms. Thus, it is not uncommon to end up with
thousands of terms in the indexing vocabulary. In the weighting phase, a large number
of terms is difficult to handle for learning algorithms. For instance, few neural networks
can handle a large number of nodes, and probabilistic models will be computationally in-
tractable unless term independence is assumed. Fortunately, most of the terms can safely
be discarded as non-representative for a topic, dramatically reducing the dimensionality
of the indexing space.

3.2.2 The Term Temporal Locality Hypothesis

Term selection and weighting schemes that disregard time, make no distinction between
regularly and temporally-clustered relevant terms. Should these terms indeed be dis-
tinguished and treated differently? We can speculate why taking distributions of term
occurrences over time into account may be useful:

The Term Temporal Locality Hypothesis: Terms occurring frequently
over a short period of time, rather than distributed evenly over the whole
time-line, indicate a temporally local event and thus they do not have lasting
predictive value.

If this hypothesis is true,

• it can be used as an additional term selection mechanism. The corresponding
terms can be removed without a negative impact in filtering effectiveness, but with
a desirable benefit for efficiency. In fact, effectiveness may also improve slightly
for the same reasons it improves in classification tasks (see Section 3.4) or if these
terms happen to be noise terms. Alternatively,

• terms with temporally clustered occurrence characteristics can be down-weighted
by learning algorithms, hopefully reducing classification noise and gaining effec-
tiveness.

In this study, we investigate this hypothesis in a term selection context. First, we need
a tool to distinguish between terms occurring frequently over a short period of time and
others.
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3.3 A Measure for Term Occurrence Uniformity

Given a stream of documents relevant to a topic, for each occurring term we qualitatively
define term occurrence uniformity as:

Term Occurrence Uniformity (TOU): the degree to which the term oc-
currences are fairly distributed in every possible interval of the stream with
respect to interval’s length.

The word “uniformity” here should not be interpreted in a strict probabilistic sense.
Probabilistically, a uniform time distribution most probably exhibits a high degree of the
fairness we are talking about. But according to our definition, terms which occur in a
simple periodic manner will have higher TOU than truly random occurrence patterns
(see Figure 2.2).

To measure uniformity according to the definition above, the statistic we have intro-
duced in Section 2.3.1 may be recruited once more. We define the TOU of a term with
respect to a topic as

U = 1 − VRDF , (3.1)

where VRDF is the value of Kuipers’ statistic (Equation 2.1) for the occurrence pattern
of the term, and RDF is the length of the pattern measured in the number of relevant
documents the term occurs in. U takes values in [0, 1− 1

RDF ]. and the smaller the U the
less fairly a term is distributed according to the definition of TOU.

3.4 Term Selection Methods

The goal of term selection is to reduce the dimensionality of an indexing space without
reducing classification accuracy. Given training data for a topic, the terms that do
not occur in relevant documents can directly be identified and removed. Traditional
stop-listing will eliminate common function words, and light document frequency (DF)
thresholding can remove sparse terms. Part-of-speech tagging has also been used for
removal of common function words (Rüger, 1998; Arampatzis et al., 2000d) (discussed
in Section 7.2.3.1). The remaining spurious and relevant terms may still amount to
hundreds or thousands for moderately large relevant training data, however. Automatic
term selection (or feature selection) methods can remove more of these terms according
to training data statistics.

Applying feature selection techniques to text classification tasks has been found not
to impair classification accuracy even for reductions up to a factor of ten. In fact, feature
selection techniques may slightly improve classification (Lewis, 1992; Yang and Pedersen,
1997; Ragas and Koster, 1998). Possible reasons for these improvements are — despite the
fact that less information is actually used — the prevention of over-fitting a classifier into
the training data, and the decrease1 in violations of the feature independence assumption
of probabilistic and vector space models.

1As the size of a feature set grows, the number of stochastically dependent features grows as well.
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(Yang and Pedersen, 1997) performed a comparative evaluation of the most popu-
larly used feature selection methods: document frequency thresholding, expected mutual
information, χ2 statistic, term strength, and information gain. In this study, it turned
out that the supposedly ad hoc DF thresholding presents a performance comparable to
the theoretically justified and best performing schemes like χ2 and information gain, for
term removal up to 90%. The term scores of the latter three methods were found to be
strongly correlated, so DF thresholding can be used instead of the others where these are
computationally too expensive2.

3.4.1 DF-thresholding in Filtering

In classification tasks, learning is applied to a single pool of terms which serve to separate
documents belonging to different classes. Filtering can be seen as a binary classification
task where each document has to be classified under one of the two classes: relevant
or non-relevant. In this respect, each filtering topic is treated independently of others,
therefore it utilizes its own pool of terms. The success of DF thresholding for term
selection in non-binary classification tasks demonstrates the importance of terms which
occur across classes.

In filtering, however, the two classes are usually too imbalanced: there are many more
non-relevant than relevant documents in a stream. DF thresholding on term statistics
of the whole stream could hurt topics by eliminating too many of their relevant terms.
Therefore, DF thresholding should be applied individually for each topic with respect
to the size of its relevant training data. Consequently, the approach of RDF (relevant
document frequency) thresholding is more suitable than DF in filtering contexts. We
define the RDF of a term with respect to a topic as the total number of relevant documents
in which the term occurs.

3.4.2 Temporally-dependent Term Selection

We have experimented with two temporally-dependent term selection schemes. The first
is based on the order of arrival (time-order), and the second on the actual time of
arrival (time-stamp) of relevant documents. The approaches are identical when relevant
documents arrive with a constant rate of documents per time unit.

The time-stamp uniformity Uts of a term is measured directly with Equation 3.1.
All time-stamps are normalized into real numbers in the interval [0, 1], where the first
document of the training part of a stream is located at 0, and the first document of
the test part at 1. To measure time-order uniformity Uto with the same Equation,
we assume a discrete time-line: R relevant documents are assumed to have arrived at
the normalized time-points i/R, i = 1, . . . , R. In both cases, terms inherit the lists of
normalized time-points of the documents they occur in.

2The success of DF thresholding for term selection (i.e. rank all candidate terms according to their
document frequency and select the most frequent ones) may sound counterintuitive. At least, the
procedure is bound to fail at very aggressive cutoffs (e.g. selecting only the top-10 terms) especially if
stop-list is not used, since it will mostly select common function words. (Yang and Pedersen, 1997) used
a stop-list. Furthermore, they have not used dangerously aggressive cutoffs. Their most aggressive term
removal reported for Reuters was 98% which resulted in 321 terms.
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In a similar manner as in DF thresholding, we have experimented with ranking the
candidate terms with our proposed schemes and then applying different cutoffs keeping
only the high scoring terms for training. We have compared both Uto and Uts threshold-
ing to RDF thresholding. Before we report the experiments, it will be useful to see what
the relation between RDF, Uto, and Uts is. Equation 3.1 has the following properties:

1. RDF = 1 ⇒ U = 0 (easily deduced from Figure 2.3), and

2. limRDF→∞ U = 1 (generally not true for all time distributions, but provable in
our context since there is always some time distance between consecutive relevant
documents).

The first property will conveniently score the terms that occur only once (too sparse)
at the bottom of the rank. The latter property implies that the expected value of U is
directly related to RDF. This effect may be desirable for small RDF in order to devalue
more sparse terms, but it also indicates a certain bias of U to RDF.

Figure 3.1 gives values of U for 10,000 randomly generated term occurrence patterns
with up to 200 occurrences. The plot at the top corresponds to Uto. In this case, for R
relevant documents, terms can occur only at points i/R, i = 1, . . . , R. Obviously, the
correlation between RDF and U becomes stronger as RDF gets close to R (the spread of
data in the figure diminishes). The plot at the bottom corresponds to Uts. In principle,
the time-line is now continuous, since relevant documents can arrive as temporally close
to each other as one may think. The rate at which the correlation between RDF and
Uts becomes stronger, as RDF tends to R, is now lower than the discrete case (the
spread of the data does not become considerably thinner for large RDF, but it becomes
asymptotically thin only when RDF → ∞). In practice, the arrival rate of documents
is always bounded due to processing power and network speed limitations. Thus, this
correlation will be somewhat stronger.

In general, it could be proved that any term occurrence uniformity measure is corre-
lated in some way to relevant document frequency, and the correlation becomes stronger
as relevant document frequency becomes larger. Especially Uto tends to produce the
same rank of terms as RDF when RDF/R → 1 (this usually but not necessarily happens
at the top of the rank). Therefore, RDF and Uto are expected to result in comparable
effectiveness at aggressive cut-offs, something that is not guaranteed for Uts.

3.5 Experimental Setup

The experimental system is based on the vector space model with a dot-product similarity
function (Section A.1), terms are weighted in a ltc fashion (Section A.2.1), and classifiers
are constructed automatically using Rocchio’s relevance feedback method (Section A.4).
We used the original Rocchio formula, that is, α = 0 and β = γ.

In order to abstract away from the threshold selection problem, we evaluate in a
routing setting: We allow the system to return a traditional ranked list of documents
for every profile: most relevant first, least relevant last. Thus, evaluation is done with
11-point interpolated average precision (Section A.5.2).
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Figure 3.1: Correlations between RDF and U for random occurrence patterns.
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As a dataset we use the Reuters-21578 text categorization test collection (Section A.6.1).
We use only the topics which have at least 100 relevant training documents (16 topics in
total). All training documents which do not belong to any of these topics were removed
from the training set. Table 2.1 shows the 16 largest topics and their corresponding
relevant document counts in the training and test stream. The training stream covers a
period of 40.4 days.

For these experiments, we use single-word terms. The pre-processing phase is per-
formed in four stages: tokenization, part-of-speech (POS) tagging, removal of common
function words, and morphological normalization of the remaining words.

Tokenization consists of detection of sentence boundaries, followed by division of
sentences into words. Detection of sentence boundaries is necessary since we use a POS-
tagger. Brill’s rule-based tagger3 (Brill, 1994) was employed to obtain POS information
for the words of the dataset. We use a POS stop-list to remove all common function words;
we remove all words except: nouns, adjectives, verb-forms, and adverbs. Morphological
normalization of the remaining words is performed by means of lemmatization (which
can be seen as a form of POS-directed stemming), using WordNet’s v1.6 (Miller, 1995)
morphology library functions4.

3.6 Results and Discussion

Figures 3.2, 3.3, and 3.4, depict some representative experimental results; the curves for
the 10 remaining topics can be found in (Arampatzis et al., 2000c). For each topic, all
potential terms (the ones which occur in relevant training documents) are ranked by
each of the term selection methods under investigation. The 11-point average precision
is plotted as a function of the fraction of terms selected, from 1 (all terms) down to 0.01
(99% of all terms are eliminated). In fact, for each term selection method and topic,
cutoffs are applied only down to the lowest point that does not result in empty relevant
training documents. All terms with single occurrences are eliminated in advance.

To begin with, our term selection results agree with previous research (Lewis, 1992;
Yang and Pedersen, 1997; Ragas and Koster, 1998): most of the terms in classification
environments can be eliminated without impairing classification effectiveness (as this
measured by average precision); even slightly improving it for some topics.

Average precision increases drastically for topics wheat , sugar , and coffee for aggres-
sive cutoffs for all term selection methods (Figure 3.2). This result seems counterintuitive
at first glance. After further investigation it is found that these topics have words which
occur in almost all of their relevant documents (unique identifiers). These words unsur-
prisingly are wheat , sugar and coffee and occur in 97%, 96%, and 100% of the relevant
documents of the respective topics. A unique identifier together with a few other terms

3Eric Brill’s tagger V1.14 and a description are available by anonymous ftp from:
ftp://ftp.cs.jhu.edu/pub/brill in the Programs and Papers directories.

4Specifically, we called the morphstr() function which tries to find the base-form (lemma) of a
word or collocation, given its part-of-speech. WordNet is created by Cognitive Science Laboratory,
Princeton University, 221 Nassau St., Princeton, NJ 08542. It is available for anonymous ftp from
clarity.Princeton.edu and ftp.ims.uni-Stuttgart.de.
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Figure 3.2: Topics with unique identifiers. TOU works better than RDF.
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have proved sufficient for achieving the best results for those topics. In those cases, av-
erage precision is maximized for classifiers with 9–12 words, while a larger number of
words is likely to introduce noise rather than improve effectiveness. It is important to
note that for those topics our methods have performed better than RDF at aggressive
cutoffs, suggesting that they select more discriminating words to accompany the unique
identifiers in classifiers.

In a comparison between RDF, Uto, and Uts, all methods present a comparable
performance (< 0.05 points of average precision) for reductions up to 90% for most topics
(Figure 3.3). At more aggressive cutoffs, however, RDF seems to perform generally better
than uniformity-based term selection (Figure 3.4). Nevertheless, even here the difference
in average precision is in general less than 0.10 points. Thus, all methods seem to hold
up comparably at aggressive cutoffs.

The fact that Uto allows, in general, more aggressive cutoffs than Uts (meaning that
it does not result soon in empty relevant documents) is a consequence of its stronger
correlation to RDF. The correlations of Uto and Uts to RDF for Reuters are given in
Figure 3.5. We normalized RDF as RDF/R per topic, so the plots make more sense when
Uto values for all topics are plotted together. The obvious upper bound of Uts values
is partly a consequence of the lack of documents arriving in weekends, as we mentioned
earlier in Section 2.3.2. It is also because of the continuous time-line considered, a
consideration which produces in general lower values than Uto.

Although both TOU methods present a correlation to RDF as R → RDF, this corre-
lation rather diminishes for frequency characteristics with which most of the terms occur,
e.g. for RDF/R < 0.1. This observation suggests that our methods are indeed novel, since
they throw away quite different sets of terms than the RDF method, for moderately ag-
gressive cutoffs. Nevertheless, the fact that we see no improvements in performance at
these cutoffs implies that we have been looking for local events where their recognition
is not of great importance for classification, e.g. in the Reuters collection.

On the one hand, the fact that the TOU term selection methods show a performance
comparable to RDF for reductions up to 90% appears promising, since document fre-
quency thresholding is known to be a powerful method for term selection. On the other
hand, if most of the terms are to be thrown away, what matters most for a term se-
lection method is to achieve high accuracy at very aggressive cutoffs. At those cutoffs,
while there is no sharper decrease in effectiveness with our methods, document frequency
thresholding seems more reliable.

3.7 Summary

We have taken up the challenge by David Hull (Hull, 1998) and investigated the use of
time distributions in retrieval environments with temporally-dependent data. We have
introduced term occurrence uniformity (TOU) as a novel term selection method with a
performance comparable to document frequency thresholding. We regard this result as
promising, since document frequency thresholding is known to be more than just an ad
hoc approach for term selection, and quite powerful in text categorization environments
(Yang and Pedersen, 1997). The hypothesis of temporal locality of terms has been neither
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Figure 3.3: TOU is comparable to RDF.
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proved nor disproved, since our results are rather inconclusive. The subject indeed merits
deeper theoretical and empirical investigation.

To keep the ball rolling, we will summarize what we believe has influenced our ap-
proach to proving the hypothesis, and suggest directions for further research:

1. We believe that the Reuters-21578 collection is improper for this kind of research.
The training period is short, covering slightly over 40 days, which gives little scope
for temporally local events and non-uniformity. We will have to repeat the test
with material collected over longer periods of time, and larger numbers of relevant
training documents. Unfortunately, the availability of such test data still remains
a big issue.

2. The approach taken has been a brute-force one; candidate features were ranked
simply according to their uniformity. A wise integration of a TOU method and
some other powerful time-disregarding term selection method may combine the
benefits of both approaches. We believe that Uts is a better candidate for such an
integration, since it better reflects the actual event identification. Temporal events
should be taken into account only when they introduce serious clustering of data in
time. If this is not the case, the new method should turn into a time-disregarding
one, since uniformity measures are (weakly but) correlated to other term selection
methods.

3. While our intention is to develop temporally-dependent term selection and weight-
ing schemes for filtering, we have tested our approach in a rather static situation,
namely document routing, with clearly defined training and test phases. A real-
world filtering task is usually an adaptive process. Adaptive filtering is an especially
sensitive task. Therefore, the application of such temporally-dependent term se-
lection and term weighting schemes in adaptive filtering is expected to show larger
variations in effectiveness.

4. The temporal classification of topics we have introduced in Section 2.3 has not
been taken into account. The distribution of a topic in time can provide useful
information. For instance, terrorism is an event-driven (aperiodically clustered)
topic, in the sense that documents about terrorism occur mostly when a related
event happens, e.g. a NYC subway bombing. Compare this to football which is
usually a rather event-irrespective (periodically clustered) topic. Football develop-
ments are reported on a regular basis, irrespective from whether something really
important has happened (unless some disaster occurs). The distribution of a topic
in time reflects on the time distributions of its terms, a fact that must be taken
into account.

At any rate, the issue of using time distributions in retrieval tasks is not settled. We
are, however, convinced that Information Retrieval in general could benefit by taking the
effect of time into account.
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Chapter 4

Threshold Optimization

4.1 Introduction

Traditional retrieval systems display documents in decreasing order of their scores with
respect to a request. A score may correspond to the probability of relevance of the
document, or to some other similarity measure. A user is supposed to go down such
a ranked list of documents, and stop at some point determined by the satisfaction (or
dissatisfaction) of his/her request. In some retrieval applications, however, rankings are
not enough.

In binary classification tasks, e.g. document filtering, a decision should be made for
every document as to whether it belongs to a given class or not. If a system is supposed
to operate over long periods of time, the interaction between the system and users should
be minimized due to cost factors. Decisions such as where to “cut” a ranked list have to
be made automatically by the system. In some cases, decisions are required to be made
as soon as a document arrives, therefore ranked lists are not even possible. These issues
suggest the thresholding of document scores.

The degree of satisfaction or dissatisfaction of a user may be expressed by an effec-
tiveness measure, and the goal of a system is to optimize this measure. Thresholding
strongly affects effectiveness, and there is no single threshold which optimizes all effec-
tiveness measures. As an example consider two users: the first user values every relevant
document as 1 unit of currency, the second user as 10 units, while a non-relevant doc-
ument costs both users 1 unit. As we will see later, such gain–cost considerations are
best captured by linear utility functions . Assuming that a ranked list has more and more
non-relevant documents at lower ranks, the gain of the first user will peak at a higher
rank than that of the second. Thus, the corresponding optimal thresholds are different.

A classification system operating over long periods of time may accumulate history,
e.g., documents and maybe relevance judgments. History can be used to alter the clas-
sification model, and thus make better predictions in the future. Systems that alter
the classification model in response to the history are called adaptive. Adaptive systems
should be able to perform updates in a limited number of calculations and memory. These
practical considerations suggest that only a portion of the history should be retained,
and algorithms ought to be implemented incrementally .
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This chapter is based on our work previously reported in (Arampatzis and van
Hameren, 2001). In Section 4.2, we review the most important related approaches
to threshold optimization. In Section 4.3, we introduce the score-distributional (S-D)
threshold optimization method, capable of optimizing any effectiveness measure defined
in terms of the traditional contingency table. The method is based on score distributions.

In Section 4.4, we provide a model for estimating score distributions and demonstrate
its accuracy in describing empirical data. Our work in modeling score distributions is
useful beyond threshold optimization problems. It can be applied to other retrieval
environments that may require such a modeling, e.g., distributed retrieval (Baumgarten,
1999), or topic detection and tracking (Spitters and Kraaij, 2000). Nevertheless, our
model — although incremental — can be computationally rather heavy.

In Section 4.5, we set out to investigate practical solutions. We suggest practical
approximations and discuss adaptivity, threshold initialization, and incrementality issues.
In Section 4.5.3, we give a practical method for optimizing linear utility functions. An
early version has been tested in the context of the TREC-9 filtering task and found to
be very effective (Arampatzis et al., 2000a); we will report the empirical evaluation in
Chapter 5.

4.2 Optimizing Thresholds

Let us assume that a set of n documents has been judged by a user, and that r of them
have been found relevant to a certain request. Then, the same set of documents is given
to a classification system which makes a decision for each document whether to retrieve it
or not. All possible four combinations of the user’s judgments and the system’s decisions
can be summarized (quite traditionally) in the contingency Table 4.1. The variables R+,
N+, R−, N−, refer to the number of documents in each category.

system’s user’s judgment
decision relevant non-relevant
retrieved R+ N+

non-retrieved R− N−
total r n − r

Table 4.1: The traditional contingency table.

Effectiveness measures in retrieval tasks are usually defined as functions of the above
four variables. Through the years, a wide range of effectiveness measures have been
defined, e.g., precision, recall, the F measure, error rate, and utility, just to name a few
popular ones.
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4.2.1 The Probability Thresholding Principle

From the point of view of optimizing measures, D. Lewis in (Lewis, 1995a) formulates
the probability thresholding principle (PTP):

“For a given effectiveness measure, there exists a threshold p, 0 ≤ p ≤ 1, such
that for any set of items, if all and only those items with probability of class
membership greater than p are assigned to the class, the expected effectiveness
of the classification will be the best possible for that set of items.”

The PTP is a strengthening of the probability ranking principle (Robertson, 1977) to
address the limitations of the latter in classification environments.

The PTP creates two categories of effectiveness measures: measures for which the
PTP applies, and measures for which it does not. For the former measures, optimizing a
threshold is theoretically trivial (we will see the practical difficulties later). A threshold
on probability of relevance can be set once, and the system is guaranteed to exhibit
optimal effectiveness in the future, no matter what the distribution of probabilities of
relevance for documents is.

As an example, let us consider the family U(λ1,λ2,λ3,λ4) of linear utility functions:

U(λ1,λ2,λ3,λ4) = λ1R+ + λ2N+ + λ3R− + λ4N− , (4.1)

where λ1,λ2,λ3,λ4 denote the gain or cost associated with each document that falls under
the corresponding category. The optimal probability threshold associated with any of
those functions has been shown in (Duda and Hart, 1973) to be:

p =
λ2 − λ4

(λ3 − λ1) + (λ2 − λ4)
=

1

1 + λ
, (4.2)

where

λ =
λ3 − λ1

λ2 − λ4
. (4.3)

Since the optimal threshold depends only on the measure, the PTP holds.
Practically, such probabilistic thresholds are difficult to apply. The main reason is

that even probabilistic retrieval models do not obtain the actual probabilities of relevance
for documents. Traditional probabilistic models make extensive use of order-preserving
transformations (some of which are difficult to reverse) of probabilities of relevance. Any
such transformation does not affect ranked retrieval, but makes formulae like Equation 4.2
practically useless, unless a way is found to reverse the transformations. A transforma-
tion reversal strategy has been adopted by the Okapi probabilistic system with rather
successful results (Robertson and Walker, 2000).

For non-probabilistic retrieval models, however, how to turn a similarity score into a
probability of relevance is still a fair question. In any case, optimizing measures for which
the PTP does not hold (e.g., the F measure) require other considerations. A method
based on score distributions, irrespective of what a score is, would be more general and
valid for any measure or retrieval model.
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4.2.2 The Straightforward Method

There exists a distributional procedure, which we will call the straightforward empirical
method, that guarantees to find an optimal threshold on training data. It consists of the
following steps:

• calculate the scores of all training documents,

• rank them,

• calculate the effectiveness measure at every position of the rank,

• go down the rank and find the position where the effectiveness measure is optimal,

• set the threshold somewhere between the score that corresponds to the position
above and the next one.

The technique implicitly considers the density of relevant to the non-relevant documents
and the spread of their scores. It has been applied many times before and, given sufficient
training data, works well (see e.g. (Schapire et al., 1998)).

Although the straightforward empirical method seems like a perfect choice for opti-
mizing thresholds in classification tasks, its drawbacks become apparent when adaptivity
is required. Firstly, there is no known way to implement it incrementally. The scores of
all accumulated training documents have to be re-calculated after every query update,
therefore document buffers are required. The fixed memory model requirement of prac-
tical systems means that buffers should be of limited size, thus some documents have to
be discarded as the history grows. This may have a negative impact on the estimation
accuracy, especially when the convergence of classifiers is more important than respon-
siveness1. Moreover, the straightforward method gives absolutely no prediction of where
the optimal threshold may be, when there is no relevance information.

Our proposed S-D method has the following advantages over the above empirical
technique.

1. It allows for better incrementality, retaining accuracy. Most of the quantities it
needs for the estimation can be updated incrementally when new data become
available.

2. It can give predictions of where the optimal threshold may be, even when there is
sparse relevance information.

3. It uses the statistical properties of the scores rather than the actual values. There-
fore, the estimation of the optimal threshold may generalize better to unseen doc-
uments.

1Responsiveness of classifiers is required when relevance drifts exist. In such cases, old training data
may be discarded more safely, since their relevance judgment was valid at the time it was generated and
may not correspond to now. Such considerations can be found in Chapter 2.
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4.3 The S-D Threshold Optimization

The S-D threshold optimization method can be applied for any effectiveness measure of
the form M(R+, N+, R−, N−), i.e. M is any function of the variables of the contingency
Table 4.1. The optimization is based on the score distributions of relevant and non-
relevant documents. It takes into account not only the means of these distributions but
also the spreads of the data and the relative density of relevant to non-relevant documents
in a stream.

Let us assume that the scores of relevant documents are distributed with a proba-
bility density function Pr(x). Then, the quantity rPr(x) dx gives the number of relevant
documents with scores in the range [x, x+dx). The number of relevant documents which
score above a threshold θ is

R+(θ) = r

∫ +∞

θ

Pr(x) dx . (4.4)

The number of non-relevant documents with scores above θ is similarly defined as

N+(θ) = (n − r)

∫ +∞

θ

Pnr(x) dx , (4.5)

where Pnr(x) the probability density function of the score distribution of non-relevant
documents. The numbers of relevant non-retrieved and non-relevant non-retrieved doc-
uments for θ are given respectively by

R−(θ) = r

∫ θ

−∞
Pr(x) dx , (4.6)

N−(θ) = (n − r)

∫ θ

−∞
Pnr(x) dx . (4.7)

Using the last four equations, M can be written as a function of θ:

M (R+(θ), N+(θ), R−(θ), N−(θ)) . (4.8)

Optimizing M means either maximizing or minimizing it (depending on whether
larger M means better effectiveness or the other way around), therefore the optimal
threshold is a solution of

dM (R+(θ), N+(θ), R−(θ), N−(θ))

dθ
= 0 . (4.9)

In order to solve this equation for a given M , we first need to define the probability
densities Pr(x) and Pnr(x) of the score distributions. We will model these distributions
in Section 4.4.
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In most cases, Equation 4.9 does not have analytical solutions because of the integrals
involved, so it has to be solved numerically. For linear measures, however, it simplifies
greatly since the integrals cancel out with the derivative of the measure. For example, for
the family of linear utility functions, the derivative of the general function of Equation 4.1
becomes

dU(λ1,λ2,λ3,λ4)(θ)

dθ
= −λ1rPr(θ) − λ2(n − r)Pnr(θ) + λ3rPr(θ) + λ4(n − r)Pnr(θ) . (4.10)

By setting this equal to zero, after a few routine calculations it leads to

λρPr(θ) = Pnr(θ) , (4.11)

where λ is given by Equation 4.3, and

ρ =
r

n − r
(4.12)

is the relative density of relevant to the non-relevant documents.
The probability P (rel|s) of a document with score s to be relevant may be expressed

as

P (rel|s) =
rPr(s)

rPr(s) + (n − r)Pnr(s)
. (4.13)

The probability of relevance at s = θ can be calculated by using Equation 4.11 on 4.13.
The result is P (rel|θ) = 1

1+λ , i.e. the same as Equation 4.2. Obviously, our method may
be used, via Equation 4.13, to reverse scores into probabilities of relevance, however, we
do not see the need to do that since we can calculate the optimal threshold in the first
place.

4.4 Score Distributions

(Baumgarten, 1999) has modeled score distributions, using the mean and deviation of
the data, with a gamma distribution shifted by the minimum score. The motivation for
using a gamma distribution has been empirical, but the approach has worked out well.
We will instead set out to build a theoretical model from scratch.

Let us represent a query by an m-tuple q = [q1, . . . , qm], where qi is a value that
corresponds to the term i. A document is represented similarly, using the same set of
terms, as ω = [ω1, . . . ,ωm]. The values of the terms in documents depend on a weighting
scheme W . Subsequently, q and W together determine the structure of the document
space. We will specify W only qualitatively such as: the larger the similarity of a
document to the query, the larger the document score defined as the linear function of
document weights:

⟨q,ω⟩ =
∑

i

qiωi . (4.14)

Represented as m-tuples, documents and queries are obviously points in IRm.
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Our aim is to calculate the distribution of the scores of a class C of documents. Since
the score of a document is a linear combination of its components, the score distribution
can be derived from the distribution of the documents in IRm. This distribution can be
represented by a probability measure Pm on IRm. For every convex subset A ⊂ IRm, the
number Pm(A) gives the fraction of documents from C for which their m-tuples are in A2.
Although a real-life set of documents is countable, we represent it by the continuous space
IRm. The large number of different documents makes this a reasonable approximation.

Of course, the distribution of documents does not have to be smooth in IRm, and
all documents are restricted to a hyper-surface in IRm of lower dimension than m, say
m − 1. Strictly speaking, we should then define a measure Pm−1 on this (curved) lower
dimensional space. We, however, prefer to formulate everything in IRm, and to put
possible constraints in Pm with the help of Dirac δ distributions . For example, if all
documents happen to be distributed on a hyper-sphere in IRm with center [0, 0, . . . , 0]
and radius R, then

Pm(dω) = P (ω)δ(∥ω∥ − R) dω , (4.15)

where P is a positive function on IRm such that

∫

IRm
P (ω)δ(∥ω∥ − R) dω = 1 . (4.16)

The δ distribution restricts the measure to be non-zero only for documents that have
lengths equal to R.

Let us denote [α,β) = [α1, β1) × [α2, β2) × · · ·× [αm, βm) and Pm(dω) = Pm( [ω,ω +
dω) ). Given Pm, the characteristic function φ of the score distribution is given by

φ(t) = E( eıt⟨q,ω⟩ ) =

∫

IRm
eıt⟨q,ω⟩ Pm(dω) , (4.17)

and the probability density of the scores of class C is given by the Fourier transform of
φ (Laha and Rohatgi, 1979):

PC(x) =
1

2π

∫ +∞

−∞
e−ıxtφ(t) dt . (4.18)

In the formulation above, the components ωi of the documents can be considered
random variables, and the score is a linear combination of these random variables

Sm =
m∑

i=1

Xi , Xi = qiωi . (4.19)

2The convexity of A is a fair requirement. Suppose you do not demand A to be convex, for example
take A to be such that it consists of tiny balls around the points of the documents, connected by very
narrow tubes. Then, Pm will look like a collection of delta peaks at the points of the documents. In
order to smooth these peaks out and get a nice continuum limit, the convexity of the subspaces A is
required.
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We will make the (common) assumption that

Assumption 1 the components ωi of documents are distributed independently.

For the measure Pm, this means that it factorizes over the components of IRm, i.e., there
are m one-dimensional measures pi so that we can write

Pm(dω) =
m∏

i=1

pi(dωi) . (4.20)

As a result of this and the linearity of the score as a function of document components,
the characteristic function can be written as a product of characteristic functions of the
components:

φ(t) =
m∏

i=1

φi(qit) , φi(qit) :=

∫ ∞

−∞
eıtqiωi pi(dωi) . (4.21)

In order to construct the one-dimensional measures, we observe that weighting schemes
are usually such, that if a term does not appear at all in a document, then this term gets
weight zero. We relate the probability of term i to appear in a document directly to its
document frequency across class C by defining

εi :=
number documents in C containing term i

total number of documents in C
, (4.22)

and we call it the term probability (TP). Consequently, the measure pi will have the form

pi( ωi ≤ x ) = (1 − εi)ϑ(x) + εiFi(x) , (4.23)

where ϑ is the step function, and Fi is some probability distribution function (PDF)
which depends on W . Fi is the PDF that corresponds to the probability density of the
weights of term i for the documents it occurs in. In the simplest case of binary weighted
document terms, Fi(x) = ϑ(x−1), ∀i. In general, the Fi functions can be derived directly
from the W being used, or estimated empirically from a dataset.

So far, we have built a model for the score distribution of a class C of documents. The
model is capable of calculating the distribution from the term probabilities and the query.
The only assumption we have made is that of the independence of term occurrences. We
have left the form of functions Fi open; these should be defined according to the W used.

Turning to the independence assumption, our model will more likely work better
when there are less violations. This suggest a small number of dimensions m, or that
the model should be used for document classes which have a small number of matches
with the query, e.g. the non-relevant documents. Dependencies blow up the scores. Our
model, however, allows us to take the dependencies indirectly into account, through the
functions Fi; these can be adjusted accordingly to compensate for the score blow-ups, as
we will see later.
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4.4.1 Gaussian Limits?

It is computationally heavy to calculate score densities using the model we have just
described. Therefore, it is sensible to look first if a Central Limit Theorem (Laha and
Rohatgi, 1979) applies to Sm (Equation 4.19) in the limit of a large number of dimensions
m, and that the score distribution becomes Gaussian in this limit. If the answer to the
question of whether a Gaussian limit appears is yes, then the next question is when it
appears, i.e., for which values of m. Which values of m can be considered large?

In Appendix B.2 we prove that a Gaussian limit appears for the distribution of relevant
document scores. Furthermore, we show that the distribution approaches the Gaussian
quickly, such that corrections go to zero as 1/m. Empirically, Gaussian shapes form
at around m = 250. For the distribution of non-relevant document scores, we show in
Appendix B.1 that a Gaussian limit is not likely, and if it appears, it only does so at
a very slow rate with m. Empirically, we have never seen Gaussian shapes even for all
dimensions resulting from massive expansion of queries.

4.4.2 Evaluation

Figure 4.1 shows empirical score data of non-relevant documents, Baumgarten’s gamma
distribution fit, and the density calculated by our model. The Rocchio-expanded query
has around 400 dimensions. Training documents were Ltu weighted, while test documents
were Lu weighted (Singhal, 1997). We approximated Lu and the dependencies introduced
due to the large number of dimensions by

Fi(x) = F (x) =
log(x) − log(a)

log(b) − log(a)
, 0 < a < b , ∀i . (4.24)

This means that the density function coming with F behaves as 1/x between a and b.
We used the values that give a good fit with the empirical data: a = 0.1 and b = 3.5.
We want to stress that, according to our observations, these parameters can be taken as
constant for different queries of approximately the same length.

Our S-D curve is calculated with a Monte Carlo method (van Hameren, 2001), which
is why it is plotted with steps. We have generated 1, 000, 000 random ω distributed
following Pm, and made a histogram of their scores. The Monte Carlo algorithm for
generating sets of m random numbers ωi, for the Fi given by Equation 4.24, goes as
follows:

• Generate a number x uniformly distributed in [0, 1].

• – if x > εi, set ωi = 0.

– if x ≤ εi, generate a number y uniformly distributed in [0, 1] and set ωi =
a exp(log(b/a)y).

The correctness of this algorithm can be shown using the unitary algorithm formalism
explained in (van Hameren, 2001, pages 117–119). Obviously, this is not the most efficient
way to obtain the curve of the score density Pnr. It is merely an easy way to obtain the
curve without having to work out the equations involved.
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Figure 4.1: Score density of non-relevant documents (zero scores are excluded).
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Equation 4.24 certainly does not correspond to Lu weights. It is just an ad hoc way
of demonstrating how robust our model is: we have effectively obtained a very good fit
on the empirical data, using the same F for all terms, and the effect of dependencies has
turned out to be directly related to the number of dimensions, no matter which ones. The
gamma distribution, nevertheless, gives a surprisingly good fit over a range of queries and
dimensionalities. But our model is more accurate exactly where this is needed: on the
tail.

4.5 Practical S-D Optimization

So far we have worked out an accurate optimization, disregarding how computationally
expensive this may be. The goal of an optimization, however, is to improve filtering, and
too much of a threshold accuracy may not capitalize in effectiveness (this still remains
to be seen). It may be useful to see how the optimization can be applied more efficiently
without sacrificing too much accuracy.

4.5.1 The Curse of Dimensionality

The optimization requires high dimensionality in queries to ensure a Gaussian central
limit for Pr. Obviously, long queries can only be obtained from massive expansion through
e.g. relevance feedback. One could argue against high dimensionality for efficiency reasons
or due to the increased term dependencies introduced. Massive query expansion, however,
has been shown to be effective (Buckley et al., 1994). Moreover, long queries are necessary
when tracking relevance drifts, which are likely to occur in the retrieval environments we
consider (Arampatzis and van der Weide, 2001). Above all, setting the thresholds right
has proved to be critical for effectiveness in classification environments.

We will not recommend giving up on high dimensionality, since shorter queries may
give zero scores for relevant documents truncating Pr at zero. Not only it is unclear
how to estimate the parameters of a truncated distribution, but also our empirical data
seem too irregular to be modeled by any known distribution. A Gaussian limit for Pr is
convenient, and as we will see it simplifies calculations.

4.5.2 Approximations

Pnr has been defined numerically through a Fourier transform. A great simplification
would be to fit a simple exponential of the form c1 exp(−c2x) on the empirical score
distribution, where c1 and c2 are the parameters determined by the fit. This approach
has worked out well in (Arampatzis et al., 2000a), using a buffer of the top-50 scoring
non-relevant documents and 5 bins. Figure 4.2 shows the empirical score distributions
for TREC topic 352 on the Financial Times collection. The bar-charts represent the
empirical score distributions of the relevant and non-relevant training documents. We
collected these data as follows. First, we trained a classifier using all relevant documents
and an equal number of the top-scoring non-relevant documents using the query zone3.

3For the query zoning method, see Section 5.5.6.2 or (Singhal et al., 1997).



52 Ch. 4 – Threshold Optimization

0

0.5

1

1.5

2

2.5

3

3.5

-50 0 50 100 150 200 250 300 350 400
score

DISTRIBUTION OF SCORES OF THE TOP-100 NON-RELEVANT DOCUMENTS FOR TOPIC FT-352

top-100 nonrelevant document scores
exponential fit on top-100

exponential fit on top-50
exponential fit on top-25
exponential fit on top-10

0

0.5

1

1.5

2

2.5

3

3.5

-50 0 50 100 150 200 250 300 350 400
score

DISTRIBUTION OF SCORES OF RELEVANT DOCUMENTS FOR TOPIC FT-352

relevant document scores
247 * Gaussian
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Gaussian (bottom).
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Then, we calculated the scores of relevant and non-relevant documents for the classifier.
The lower plot shows the empirical distribution of relevant document scores, and the
corresponding Gaussian multiplied by the number of scores. The upper plot shows the
empirical distribution of the top-100 non-relevant scores, and exponential curves fitted
on the top 100, 50, 25, and 10 scores. It seems that at least 50 or more scores are needed
for an accurate threshold estimate. Similar curves for TREC topic 391 can be found in
Appendix B.3.

An extra bonus of using an exponential is that, for linear measures, Equation 4.11
can be solved analytically, if Pr and Pnr are replaced by the corresponding Gaussian and
exponential. Figure 4.3 shows the optimal T9U (i.e. a linear utility with λ = 2 and a
fixed lower bound at −100; see Section 5.2.4) threshold, which is simply the score at
which the densities Pr and Pnr, weighed as λr and n − r respectively (Equation 4.11),
intersect each other; we will give the complete solution in Section 4.5.3. For non-linear
measures, however, Equation 4.9 has to be solved numerically and involves computing
error functions. More about numerical methods can be found in (Press et al., 1992).
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Figure 4.3: The optimal T9U threshold.

4.5.3 Optimizing Linear Utility Functions

In this section, we work out the practical optimization for the family of linear utility
functions of Equation 4.1. The linearity of such measures allows for analytical solutions
of Equation 4.9, since the integrals describing the document counts cancel out with the
derivative of the measure.
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As we have shown earlier in Section 4.3, the derivative of the family of linear utility
functions is

λρPr(θ) = Pnr(θ), λ =
λ3 − λ1

λ2 − λ4
, ρ =

r

n − r
. (4.25)

Let us now plug a Gaussian density for the relevant document scores

Pr(θ) =
1√
2πσ2

r

exp

(
−(θ − µr)2

2σ2
r

)
, (4.26)

where µr is the mean score, and σr is the standard deviation. For the density of non-
relevant scores, we will use an exponential of the form

Pnr(θ) = c1 exp (−c2θ) , (4.27)

where the parameters c1 and c2 are selected so that Pnr is fitted on the right tail of the
empirical distribution. Using Equations 4.26 and 4.27 on Equation 4.25, it results in

λρ
1√
2πσ2

r

exp

(
−(θ − µr)2

2σ2
r

)
= c1e

−c2θ .

By taking the logarithms of both sides and moving everything to the left, we get

ln

(
λρ

1

c1

√
2πσ2

r

)
− 1

2σ2
r

(θ − µr)
2 + c2θ = 0 ,

which after a few routine calculations leads to the 2nd degree polynym

1

2
aθ2 − bθ +

1

2
c = 0 ,

a =
1

σ2
r

,

b =
µr

σ2
r

+ c2 ,

c =
µ2

r

σ2
r

− 2 ln

(
λρ

1

c1

√
2πσ2

r

)
. (4.28)

The discriminant is ∆ = b2 − ac, and the optimal threshold is

θ =

{
(b −

√
∆)/a , if ∆ ≥ 0 .

+∞ , if ∆ < 0 .
(4.29)

Note that since the exponential corresponds to the top non-relevant scores, it does
not extend accurately to low scores. Consequently, the optimization is more accurate
when there is no contribution of N− into the utility score, i.e. for λ4 = 0.



Sec. 4.5 – Practical S-D Optimization 55

4.5.4 Threshold Initialization

Our method relies on relevance information to estimate the corresponding curves, how-
ever, in some tasks (e.g., filtering) no such information may be available at the time of
initiation. How should a threshold be initialized when there is sparse or no relevance
information?

Let us assume that a stream of documents has already run for some time, when a new
filtering q is issued. In principle, Pnr can be constructed with no relevance information,
using the Fourier transform method and TPs calculated on all documents seen so far,
since it is very close to the score density of all documents. The query itself can give an
estimate of where Pr lies, e.g., ||q||2 can be seen as the maximum relevant score. Some
reasonable assumption for the standard deviation σr of Pr can produce a usable curve
e.g. through an equation µr = ||q||2 − 3σr, where µr is the mean of Pr.

4.5.5 Adaptivity and Soft Thresholds

A special problem that shows up in adaptive environments is that relevance information is
becoming available only for documents retrieved. This may invalidate the score statistics
required, and lead a system to a selectivity trap (Section 2.8). For instance, estimating
a Gaussian from data which do not include its left tail (these are the data below the
threshold), may over-estimate the threshold, retrieving no more documents.

A solution would be to use a soft probabilistic threshold , i.e., a document that scores
at s, s < θ, may still be retrieved by sampling it with a probability P (rel|s) given by
Equation 4.13. Of course, the statistic that a document retrieved like this provides,
should be weighted as 1/P (rel|s). In this way, score statistics can be maintained more
accurately, and selectivity traps can be avoided. The idea remains to be tested.

4.5.6 Incrementality

In general, means and deviations can be updated incrementally. In our context, however,
every query update causes the scores of previously seen documents to change, suggesting
that all scores should be re-calculated. Assuming a static W , in the sense that document
weights do not depend on any statistics external to documents (e.g., documents are only
tf -weighted), we show in Appendix B.4 that

µr =
1

r

r∑

i=1

⟨q,ωi⟩ =
1

r
⟨q,

r∑

i=1

ωi⟩ . (4.30)

Obviously, the sum of relevant document tuples is sufficient and can be updated in-
crementally. This way of calculating the mean score has been seen before in (Callan,
1998).

The variance σ2
r can be calculated via σ2

r = µ(2)
r − µ2

r , where the mean of the squared
scores is given by

µ(2)
r =

1

r

r∑

i=1

⟨q,ωi⟩2 =
1

r

∑

jk

qj

(
r∑

i=1

ωijωik

)
qk , (4.31)
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where e.g. ωij is the value of the jth component of document i. The proof of Equa-
tion 4.31 is given in Appendix B.5. The sum in the parenthesis can be represented by a
2-dimensional matrix o with components

o(r)
jk =

r∑

i=1

ωijωik , (4.32)

which can be updated incrementally as

o(r+1)
jk = o(r)

jk + ω(r+1)jω(r+1)k , (4.33)

upon the arrival of document ωr+1.
In the case where an exponential fit is used for Pnr, a small document buffer to hold the

top-scoring retrieved non-relevant documents is indispensable because all scores should
be re-calculated. If this buffer is full when a new non-relevant document is retrieved, the
approach of ranking the buffered documents and discarding the lowest-scoring one has
worked out well in (Arampatzis et al., 2000a), as we will see in Chapter 5. The Fourier
transform method does not require a buffer.

4.6 Summary

We have developed a novel method for optimizing thresholds, namely, the score distri-
butional (S-D) threshold optimization. The method is capable of optimizing any effec-
tiveness measure defined in terms of the contingency Table 4.1. The analysis we have
provided, we believe, is general enough to apply to a range of retrieval models, from prob-
abilistic to vector space. Moreover, the method can be applied incrementally, a highly
desirable feature for adaptive environments.

An earlier version of the S-D optimization has been tested in the context of the TREC-
9 filtering task, and found to be very effective; we will report the empirical evaluations in
Chapter 5. In this Chapter, we have revised the method so as to achieve better accuracy,
especially in adaptive environments, and better incrementality. We have provided a
range of choices, from very accurate and computationally expensive to practical and less
expensive approximations. Whether the more accurate choices capitalize in improvements
in classification effectiveness still remains to be seen.

Our work in modelling score distributions can be useful beyond threshold optimization
problems. It can be applied to any retrieval environment that may use such distributions,
e.g., distributed retrieval (Baumgarten, 1999), or topic detection and tracking (Spitters
and Kraaij, 2000).



Chapter 5

The TREC Filtering Track

This chapter is based on our previously published work in (Arampatzis et al., 2000a). It
describes our participation in the TREC-9 Filtering Track. For completeness, we give a
brief introduction to TREC in Section 5.1, and focus on the Filtering Track in Section 5.2,
especially on the setup of TREC-9. The reader familiar with TREC and the Filtering
Track may proceed to Sections 5.3+ where our experience is described.

5.1 What is TREC

TREC1 stands for Text REtrieval Conference, held annually since 1992 at the National
Institute of Standards and Technology (NIST). Its purpose is to support Information
Retrieval research by providing the infrastructure necessary for large-scale evaluation
of retrieval methodologies. Although, at its beginning, the initiative focussed on text
retrieval, it has expanded to include retrieval of other media, such as audio or video.

The workshop consists of a set of tasks known as tracks . Each track focuses on a
particular variant of the retrieval task. The set of tracks (and their definitions) have
varied over the years, depending on data availability and interest shown by participants.
For example, the call for participation of TREC-10, which will be held in November 2001,
specifies the following tasks:

Cross-language Retrieval. The track investigates the ability of systems to find docu-
ments that pertain to a topic regardless of the language in which the document is
written.

Filtering. Documents are assumed to arrive one at a time. For each document, sys-
tems must make a binary decision for each topic whether the document should be
retrieved for the topic or not.

Interactive. The track studies the interaction between users and retrieval systems.

Question Answering. As opposed to document retrieval, systems must return a text
snippet containing the answer for a specific question.

1http://trec.nist.gov
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Video Retrieval. The track investigates the content-based retrieval of digital video.

Web Retrieval. The track investigates the retrieval of web-pages.

Other tracks in previous years included Ad Hoc Retrieval, Spoken Document Retrieval,
High Precision, Very Large Corpora, Natural Language Processing, and retrieval of doc-
uments in languages other than English, such as Chinese and Spanish. Organizations
may choose every year to participate in any number of the specified tracks.

For each TREC, NIST provides test sets of documents and questions. Participants
run their own retrieval systems on the data, and return their results to NIST. NIST
judges the retrieved documents for correctness, and evaluates the results. The TREC
cycle ends with a workshop that is a forum for participants to share their experiences.
More about the TREC conferences can be found in the overview reports of the TREC
Proceedings, e.g., (Voorhees and Harman, 1999), (Voorhees and Harman, 1998).

5.2 The Filtering Track

We will describe in this section, how the filtering track has developed over the years,
and specify in more detail the setup used for TREC-9. We will give the definitions of
the tasks, the datasets used for experiments, and evaluation measures. For the complete
overview of the track see (Lewis, 1995b), (Lewis, 1996), (Hull, 1997), (Hull, 1998), (Hull
and Robertson, 1999), and (Robertson and Hull, 2000).

5.2.1 Definitions of the Tasks

Consider a stream of documents already running for some time (the system has some
history) when a user issues a query.

Adaptive Filtering. For the user query, a limited (or zero) number of documents from
the history is given as being relevant, although many more may have been. A system
should use only this relevance information, and try to find new relevant documents
in the future. A binary decision whether to retrieve a document or not should
be made as the document arrives, meaning that decisions cannot be postponed or
retrospectively altered. For every document that the system retrieves, the user is
assumed to give immediately a binary judgement of relevance for that document.
This information may be used to update the filtering model. No user relevance
judgements are provided for non-retrieved documents, since the user is assumed
to have absolutely no idea of what the system rejects. Of course, the system may
accumulate any other kinds of statistical data on all documents occurred in the
stream.

Batch Filtering. The system starts with almost complete relevance judgements on the
past, meaning that when the query is submitted almost all documents relevant to
the query in the history of the system are known. In this respect, the system is given
much more relevance information to begin with. There are two options on how to
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proceed. The first is not to adapt the filtering model at all in the future, while the
second option is to proceed as in the aforementioned adaptive case. Systems that
choose the second option are named batch-adaptive.

Routing. The system starts with the same relevance information as in batch filtering,
but it is not allowed to adapt in the future. Furthermore, instead of making a
binary decision, the system assigns retrieval scores to the incoming documents.
The final output is a list of the top-1000 ranked documents.

In fact, systems have to process more than one user requests, which for practical reasons
are all assumed as being submitted at the same time and last until the end of the incoming
document stream.

Filtering was introduced as a separate track in TREC-4 to address a more difficult
version of the routing track. The routing track has been performed since TREC-1. “Rout-
ing” in TREC has been defined rather unrealistically. Real-world routing applications
require a system to a make binary decision of whether or not to retrieve an incoming doc-
ument, not simply form a ranked list of documents. In this respect, TREC-4 introduced
the filtering track, incorporating routing and extending it to batch filtering where binary
decisions are required. The adaptive task was introduced in TREC-6 and it is admittedly
of increased difficulty and realism. Since then, the task definitions above have been more
or less the same.

.I 4
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Serum glucose changes after administration of 50% dextrose
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JOURNAL ARTICLE.
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A prospective clinical trial was conducted to estimate the rise in
serum glucose level after an intravenous bolus of 50 ml of 50%
[...]
predicted after a single intravenous bolus of D-50.
.A
Adler PM.

Figure 5.1: A document from OHSUMED.
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5.2.2 Document Streams — OHSUMED

For the TREC-9 filtering track, the OHSUMED collection was used as a test dataset.
OHSUMED has been used before for IR experiments, see e.g. (Hersh and Hickam, 1994),
(Hersh et al., 1994), or (Lewis et al., 1996). The collection is a set of 348,566 references
from MEDLINE2, the on-line medical information database, consisting of titles and/or
abstracts from 270 medical journals over a five-year period (1987-1991). The available
fields in documents are: title, abstract, MeSH indexing terms, author, source, and pub-
lication type. Some abstracts are truncated at 250 words and some references have no
abstracts at all (titles only). Figure 5.1 shows an example document.

Other document collections that have been used before in TREC as experimental
document streams are: the Foreign Broadcast Information Service (FBIS) corpus in
TREC-6, the Associated Press (AP) newswire collection in TREC-7, and the Financial
Times (FT) in TREC-8.

5.2.3 Topics and Relevance Judgements

Two primary sources of filtering topics were used for the TREC-9 filtering track:

1. A subset of the original query set developed by (Hersh and Hickam, 1994) for their
experiments.

2. A set of MeSH terms and their definitions3.

The existing OHSUMED topics describe actual information requests, but the relevance
judgements probably do not have the same coverage provided by the TREC pooling
process4. This simply means that there may be more relevant documents than the existing
relevance judgements suggest. The MeSH terms do not directly represent information
requests, they are rather controlled indexing terms, and the assessment is more or less
complete. Our group has experimented only with the OHSUMED topics, so next we will
focus on these.

The topic statements are provided in the standard TREC format and consist of
<title> and <desc> (= description) fields only. The meaning of these fields for the
OHSUMED topics is the following:

• <title> = patient description.

• <desc> = information request.

Figure 5.2 shows an example OHSUMED topic.
The test collection was built as part of a study assessing the use of MEDLINE by

physicians in a clinical setting (Hersh and Hickam, 1994). Novice physicians using MED-
LINE generated 106 queries. Only a subset of 63 of those queries were used in the
TREC-9 filtering track. Before the physicians searched, they were asked to provide a
statement of information about their patient as well as their information need.

2http://www.medline.com
3http://www.nlm.nih.gov/mesh/
4For TREC’s pooling process, see e.g. (Voorhees and Harman, 1999).
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<top>
<num> Number: OHSU27
<title> 75 year old with diabetes and hypertension with Q waves on EKG
<desc> Description:
differential diagnosis of U waves
</top>

Figure 5.2: An example OHSUMED topic.

Each query was replicated by four searchers, two physicians experienced in searching
and two medical librarians. The results were assessed for relevance by a different group
of physicians, using a three point scale: definitely, possibly, or not relevant. Over 10%
of the query–document pairs were judged in duplicate to assess inter-observer reliability.
For evaluation in TREC-9, all documents judged as either possibly or definitely relevant
were considered relevant. However, systems had the option to distinguish between these
two categories during the learning process.

The OHSUMED 1987 documents were intended for training purposes only. For batch
filtering and routing, all evaluated documents from the 1987 collection were given as
known. For adaptive filtering, only two documents judged as definitely relevant were
given for each topic. The training samples extracted for adaptive filtering were selected
by random sampling. All runs were allowed to use the OHSUMED 1987 collection for
generating collection summary statistics (such as IDF) or other purposes.

5.2.4 Evaluation Measures

TREC’s main concern has been effectiveness rather than efficiency. For each subtask,
systems have to return a set of documents per topic for evaluation. For the filtering tasks,
the retrieved sets are assumed to be unordered and of arbitrary size. The retrieved sets
of the routing task are limited to the top-1000 documents per topic.

The routing task has been traditionally evaluated according to the average uninter-
polated precision5, i.e. the sum of precision values at every position of the rank divided
by 1000 and averaged over all topics. Average precision is a single-valued measure which
combines both the precision and recall of a system; it amounts to the area below the
recall–precision curve. In early TRECs, until TREC-5 and 6, more detailed evaluations
were being reported in the form of 11-point interpolated recall–precision and recall–
fallout, but as the focus of the track has moved from routing to filtering these measures
have been abandoned.

Since the filtering tasks return unordered sets of documents, not rankings, differ-
ent effectiveness measures have been used. These have mainly been utility functions;
the quality of filtering is computed as a function of the benefit of retrieving a relevant
document and the cost of retrieving a non-relevant one. In their simplest form, utility
functions have been linear, however, non-linear measures were tried as well in TREC-8.
The non-linear utilities assumed diminishing returns from relevant documents, for exam-

5The term average uninterpolated precision has been usually (and misleadingly) used to refer to the
average uninterpolated precision averaged over all topics.
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ple, the 100th relevant document retrieved provides less benefit than the 10th. Only a
few participants optimized their runs for those measures; many participants felt that the
non-linear measures did not model a user’s behaviour very well. Another experimental
measure tried in TREC-6 was the average set precision (ASP), i.e. the product of preci-
sion and recall for the retrieved set. Table 5.1 summarizes the evaluation measure trends
in the TREC filtering track. Developing appropriate effectiveness measures for filtering
continues to be an important part of the track.

TREC 2 3 4 5 6 7 8 9
Routing Average Uninterpolated Precision

11-point Recall–Precision
11-point Recall–logFallout

Filtering Linear Utilities
ASP non-L. Utilities T9P

Table 5.1: Effectiveness measure trends in TREC.

For TREC-9, the routing task was evaluated with average precision. The filtering
tasks were evaluated according to a linear utility measure and a precision-oriented mea-
sure; we will describe these below in more detail. There had been no additional relevance
judgements on the retrieved documents6; all evaluation was done on the basis of the
existing relevance judgements. All runs were evaluated based on the full document test
set, OHSUMED 1988-91.

5.2.4.1 TREC-9 Utility — T9U

For TREC-9, a single specific linear utility function was used, with a fixed lower bound
MinU. The lower bound MinU ensures that an individual topic which performs really
badly will not dominate the average. It must depend on the time period. The specific
figure chosen for the OHSUMED topics is −100, and is adjusted pro rata for evaluating
adaptive filtering over shorter periods. This is equivalent to selecting approximately 2
non-relevant documents per month and no relevant documents. Using the variables of
the contingency Table 4.1, the measure is defined as follows:

T9U =

{
2R+ − N+ , if (2R+ − N+) > MinU .
MinU , otherwise .

MinU = −100 , for 4 years or pro rata adjusted . (5.1)

Raw T9U figures were averaged across topics, with no normalization.

5.2.4.2 TREC-9 Precision-oriented Measure — T9P

The aim of this measure is to stress precision, while demanding a minimum number of
documents, MinD, to be selected for each topic. As with the lower bound on utility,
MinD must depend on the time period. It was set at 50 documents over the 4-year test
period, or approximately 1 per month. The measure is identical to precision except that

6Additional relevance assements are usually done in TRECs according to the pooling methodology.



Sec. 5.3 – On the TREC-9 Filtering Track 63

the denominator is constrained by MinD, thus penalizing systems which retrieve less than
MinD documents:

T9P =
R+

max(MinD, (R+ + N+))
,

MinD = 50 , for 4 years or pro rata adjusted. (5.2)

The T9P measure was calculated for each topic and averaged across topics.

5.3 On the TREC-9 Filtering Track

As first-time TREC participants, we participated in all three subtasks — adaptive, batch,
and routing — while concentrating mainly on adaptive tasks. We have made use of two
different systems:

• FilterIt, for the adaptive and batch-adaptive7 tasks: a pure adaptive filtering
system developed in the context of our TREC-9 participation. It is based on the
Rocchio algorithm.

• lcs (Ragas and Koster, 1998), for the routing and batch filtering tasks: a multi-
classification system based on the Winnow algorithm.

Task Topics Optimized for System Run-tag
adaptive OHSUMED T9U FilterIt KUNa1T9U
adaptive OHSUMED T9U FilterIt KUNa2T9U
adaptive OHSUMED T9P FilterIt KUNa1T9P
adaptive OHSUMED T9P FilterIt KUNa2T9P
batch-adaptive OHSUMED T9U FilterIt KUNbaT9U
batch OHSUMED T9U LCS KUNb
routing OHSUMED — LCS KUNr1
routing OHSUMED — LCS KUNr2

Table 5.2: TREC-9 filtering runs submitted by KUN.

In adaptive filtering, our contribution has been threefold. Firstly, we have investi-
gated the value of retrieved documents as training examples in relation to their time of
retrieval. For this purpose we have introduced the notion of the half-life of a training doc-
ument. Secondly, we have introduced a novel statistical threshold selection technique for
optimizing linear utility functions. The method can be also applied for optimizing other
effectiveness measures as well, however, the resulting equation may have to be solved nu-
merically. Thirdly and most importantly for adaptive long-term tasks, we have developed
a system that allows incremental adaptivity. We have tried to minimize the computa-
tional and memory requirements of our system without sacrificing its accuracy. In the
batch and routing tasks, we have experimented with the use of the Winnow algorithm,
including a couple of small improvements.

7We see the batch-adaptive task as an adaptive rather than a batch filtering task.
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From the two topic-sets given, we have experimented only with the 63 OHSUMED
queries. We did not submit any runs on the 4904 MeSH topics; these were simply
too many to be processed by our present systems in a reasonable time and space. All
experiments were done using a keyword-based representation of documents and queries,
with traditional stemming and stoplisting, although our long-term intention is to use
phrase representations (Chapter 6), and apply more sophisticated term selection methods
(Chapter 3). Table 5.2 summarizes our official TREC-9 runs.

Next, we will briefly describe the pre-processing applied to the data. The FilterIt
and lcs systems are described in Sections 5.5 and 5.6, respectively. In Section 5.7 we
give an overall view to how our systems performed in relation to other participants.

5.4 Stream and Topic pre-processing

We used only the title and abstract fields (.T and .W fields in Figure 5.1) of the
OHSUMED documents; their MeSH-headings were discarded. The pre-processing of the
documents and topics was minimal and quite traditional. It consisted of the following
steps:

1. Replacement of all non-letters by spaces.

2. Deletion of all one-letter words.

3. Lowercasing.

4. Stoplisting8.

5. Stemming9.

6. Deletion of all one-letter stems.

7. DF-stoplisting: removal of the top-100 stems with the highest document frequencies
in OHSUMED 1987, only for the non-adaptive tasks. For the adaptive tasks, we
did not remove any stems; incremental idf (see Section 5.5.3) does not combine
well with DF-stoplisting.

The titles and descriptions of topics were processed in the same way.
In summary, our pre-processing was quick-and-dirty. There was no special treatment

of proper names, all numbers were lost, and we made no use of multi-word terms such
as phrases or word clusters. Moreover, we used no external resources such as online
dictionaries or thesauri.

8We used the standard stoplist of the SMART system, english.stop, available from:
ftp://ftp.cs.cornell.edu/pub/smart/

9We used the Porter stemmer of the Lingua::Stem (version 0.30) library extension to Perl.
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5.5 The FilterIt System

The FilterIt system, which we used for performing the adaptive and batch-adaptive
tasks, has been developed in the context of our TREC-9 participation. It is a pure adap-
tive filtering system based on Rocchio’s method (Rocchio, 1971) (Section A.4). Rocchio’s
method performs well in a situation where only a few training documents are available,
see e.g. (Ragas and Koster, 1998), and this is exactly the case in the adaptive task. In
such a situation, the initial query becomes important and the method can moreover deal
in a suitable way with the topic descriptions.

We have modified the formula traditionally used for relevance feedback in order to
allow for weighing of training documents according to their time-stamps. Moreover, the
implementation of the algorithm we will present, allows very accurate incremental train-
ing of classifiers, without using any document buffers, so its memory and computational
power requirements are low. In order to further limit the memory requirements of our
system per topic, we also use a form of on-the-fly term selection.

Our system adapts queries and thresholds independently for each topic, meaning that
the filtering model for a topic is updated after the retrieval of every single document for
that topic. In the runs optimized for the T9P measure, threshold adaptations are even
triggered independently of document retrievals.

For optimizing the filtering thresholds, we have introduced a new statistical technique
which takes into account the relative density of relevant to non-relevant documents seen
in the stream, and their score distributions. Most of the quantities that our technique
requires can be updated incrementally, but a small document buffer seems unavoidable.

In the rest of this section we will expand on all the above.

5.5.1 Incremental Query Training

The version of Rocchio’s method traditionally used for relevance feedback is

Q = α Q0 + β
1

|R|
∑

D∈R

D − γ
1

|N |
∑

D∈N

D , (5.3)

where Q0 the initial query, R and N the sets of relevant and non-relevant documents
respectively, and |.| denotes the number of elements in a set. The parameters α, β, and
γ control the relative contribution of the initial query, and that of the relevant and non-
relevant documents to the new query Q. All components which end up with negative
weights in Q are removed.

The initial query and the documents are usually represented by vectors weighted in
a tf.idf fashion10. While the tf components are usually independent of corpus statistics,
the idf components depend on the collection. Since the whole collection in filtering is not
available in advance, the idf components should be updated over time (incremental idf ).

10tf.idf denotes here the family of weighting schemes for which the value of a term increases with its
frequency in a document or query and decreases with its frequency across the collection. In practice, tf
and idf are implemented by some monotonically increasing (non-linear) functions of the corresponding
frequencies. We will give our precise choice of these functions in Section 5.5.3.
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Therefore, it would be more suitable for filtering to keep these quantities separately. As
a result, queries and documents in our system are only tf -weighted, e.g., a document Di

is represented by

Di = [tfi1, . . . , tfiK ] , (5.4)

where K the total number of terms known by the system at one point in time. Any
document or query is a sparse array since it contains far less non-zero components than
K, so they are implemented by hash arrays.

Since all vectors are only tf-weighted, we have moved the impact of idfs into the
similarity function, which for a query Q and a document D has been defined as:

S(Q,D) = Q IDFDT , (5.5)

where IDF is the diagonal matrix diag(idf1, . . . , idfK), and XT denotes the transposed
array of X. Such an implementation allows, at any time, the usage of the latest idf
values.

Now, Equation 5.3 can be calculated incrementally by simply re-writing it as

Qn = α Q0 + β
1

Rn
Bn − γ

1

Nn
Cn , (5.6)

where Bn, Cn are the accumulated sums of the term frequency vectors of relevant and
non-relevant documents respectively, and Rn, Nn are the numbers of documents in each
category11. When document Dn is retrieved, Qn is calculated in two steps. First, all
time-dependent quantities (everything on the right side of the formula which has the
subscript n) in the last formulation are updated. Then, the query Qn is calculated using
the updated quantities.

Summarizing, the architecture we have just described allows the most accurate in-
cremental training with Rocchio. No training documents have to be discarded, as would
have been necessary in a sliding window adaptive system. Moreover, no document buffers
are necessary, except Bn and Cn in which all training documents are accumulated. In
order to achieve all these, the only requirement is that tf s are static in the sense that they
can be calculated only once when a document arrives. As we have seen in Section 4.5.6,
this feature allows for incrementality in the calculation of the mean relevant document
score and variance — parameters necessary for optimizing filtering thresholds.

Of course, there is another minor concession we make here, that is to allow counting
registers of infinite width (the values of the components of Bn, Cn, and the variables Rn,
Nn can grow up to infinity). Double precision arithmetic approximates this assumption
well. In any case, when a number approaches the maximum width, all quantities can be
divided by a constant without invalidating the model.

11The convention we use for the subscript n is: n is the total number of training documents available
(relevant and non-relevant). Training documents are the ones given at the time of bootstrapping (as for
the batch-adaptive task), and all retrieved ones during filtering since their relevance judgment can be
seen. Thus, Qn is the classifier built using n training documents. If r of them are relevant, then Rn = r
and Nn = n − r, and Bn, Cn contain the sum of r and n − r document vectors respectively.
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5.5.2 Convergence, Responsiveness, and Decay

The goal of the incremental training we have described so far is to gradually converge
to a perfect classifier. All training documents, irrespective of their time of retrieval, are
taken into account with equal importance in constructing the classifier. Systems that
implement this kind of converging adaptivity we call asymptotically adaptive. The use of
an asymptotically adaptive system for filtering implicitly assumes that topics are stable,
i.e. there are no topic drifts .

If there are topic drifts, the position of the perfect classifier moves in the document
space. Therefore, it is beneficial for a filtering system to be capable of tracking a topic
rather than converging. This capability can be achieved by weighing training documents
that are retrieved recently more heavily. We call such systems locally adaptive. The
choice between local adaptivity and asymptotic adaptivity should be made depending on
whether convergence or responsiveness is more important. More about various forms of
adaptivity for filtering systems and the nature of topics in filtering have been discussed
in Chapter 2.

In TREC-9, topics are assumed to be stable, suggesting that an asymptotic behaviour
would be more proper. However, the OHSUMED collection consists of documents col-
lected in a period of five years and it is likely that for a topic the content of its relevant
documents changes over the years, e.g., think of new treatments developed for the same
sickness. The effect of such document content drifts is equivalent to user interest drifts
in the sense that the idea of relevance changes. Consequently, we experimented with a
locally adaptive system.

In order to weigh training documents differently, we replace the average vectors in
the Rocchio formula of Equation 5.3 with weighted averages . This does not invalidate
the motivation of the formula. For instance, the average vector of relevant documents
becomes

1

|R|
∑

D∈R

D =
1∑

i:Di∈R li

∑

i:Di∈R

liDi , (5.7)

where li represents the weight with which the document Di contributes to the average.
In Section 2.5, we have seen that a heavier weighting of recently retrieved training

documents can be implemented by a decay operation with half life h. Whether the
initial query Q0 should decay or not depends on the nature of a topic. For a drifting
user interest, Q0 should decay. For a stable interest with document content drifts (as we
have argued to be true for TREC-9), any of the two choices can be motivated (it rather
depends on how Q0 is formulated). For our official TREC-9 runs, we chose to decay or
gradually eliminate Q0. We will come back to the subject of initial query elimination in
Section 5.5.6.1.

The decay operation can be performed incrementally. When Dn is retrieved, and
assuming that it is found to be relevant, then it is easy to show that average vectors,
e.g., the one of relevant documents, can be updated as:

1

Rn
Bn =

1

lRn−1 + 1
(lBn−1 + Dn) , l = 0.5(g/h) ,

where g = tn−tn−1 stands for the elapsed time since the previous query update (i.e., since
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Qn−1 was calculated), and h is the half life. Therefore, when a document is retrieved, all
time-dependent quantities of Equation 5.6 are multiplied by the current decay factor l
before they are updated with the new document. To maintain correct decaying weights,
even the quantities which are not going to be updated have to be multiplied, e.g. even if
Dn is relevant, Nn = lNn−1 and Cn = lCn−1.

In TREC-9, time was estimated on the number of documents seen in the stream. It
was given that the stream produces, on average, around 6,000 documents per month.
Therefore, for a half life of m months, we set h = 6, 000m, and g is simply the number
of documents filtered since the previous query update.

5.5.3 Term Weighting — Ltu

For term weighting, we “borrow” from (Singhal, 1997) the Ltu formula:

L =
1 + log(f)

1 + log(average f in document or query)
,

t = log

(
N + 1

df

)
,

u =
1

0.8 + 0.2number of unique terms in document or query
average number of unique terms per document

,

Ltu weighting = L × t × u , (5.8)

where f is the frequency of the term in the document or query, df is the number of
documents in which the term occurs from a collection of N documents in total. In
the Ltu weighting scheme, L is the term frequency factor, t is the inverted document
frequency factor, and u is the length normalization of the document or query.

The N and df values were initialized from OHSUMED 1987. Then we used incre-
mental idf : upon the arrival of a new document and before any other calculation is
performed, the df values are updated and N is incremented by one12. In this way, for all
document terms we have df > 0 and the t factor can be defined. For any query terms
with df = 0, we set t = 0.

The application of the Ltu formula in adaptive filtering presents a small problem.
The average number of unique terms per document changes over time, therefore, the
term weights of past documents should be re-calculated as well. We chose to calculate
this average document length on OHSUMED 1987 and assume that it will not change in
the future. This allows the calculation of the u factor once and for all, when a document
arrives. The assumption that the average document length will remain the same in the
future is not far from reality for the OHSUMED collection, since there is no special reason
why medical researchers should write abstracts of different lengths over time.

12Actually, the probability of a document containing the term may itself be time-varying. Consequently
a temporally local estimation of t, e.g. using an exponential decay for N and df in the same way as
for training documents, would be more proper. We have not used such a scheme for filtering the
OHSUMED stream, because we believe that its composition (the kind of documents it contains) is not
altered considerably during its time-span.
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Summarizing and using our notation, the exact form of the term weighting we used is:

tf = L × u′ , idf = t , (5.9)

where u′ is the same as u but with the average document length fixed on its OHSUMED
1987 value (that was 40.8 keywords after the pre-processing). This form presents static
tf components and dynamic idf s. These features allow for incrementality in training and
threshold optimization, as we have shown in Sections 5.5.1 and 4.5.6 respectively.

5.5.4 On-the-fly Term Selection

It is empirically known that as the size of a corpus grows, the number of unique words
seen grows with the square root of the number of documents. In the case of multi-word
terms (phrases), the number of such enriched terms grows even faster. Therefore, the
number of components of Bn and Cn vectors grows, at least, with the square-root of the
number of retrieved documents n. To limit the size of these vectors we use term selection.

In fact, term selection is more critical for the S-D threshold optimization we have
introduced in Chapter 4. The incremental application of the optimization requires ma-
trices as large as the square of the size of Bn or Cn (see Section 4.5.6), consequently the
memory requirements may explode early on, if no term selection is used.

Term selection is applied for each topic independently, before every incremental up-
date of the corresponding query. Our on-the-fly13 term selection scheme consists of the
following steps. First, a query is constructed using information only from relevant in-
stances and the current IDF matrix:

Qn,rel =

(
α Q0 + β

1

Rn
Bn

)
IDF . (5.10)

Then, we rank all terms of Qn,rel according to their weight, and select only the top-k ones
and the terms occurring in Q0. The rest of the terms are discarded and removed from
all quantities kept by the system for the topic (e.g., Bn and Cn). Then, Qn is calculated
using the reduced data.

This technique limits the memory required for filtering a topic. However, the size of
the IDF matrix still grows by the time, as previously unseen terms occur in documents
of the stream. We consider IDF as stream data rather than topic data, since it is the
same for all topics being filtered at any point in time. Therefore, we do not limit its size.

5.5.5 Optimizing T9P

The S-D threshold optimization can be applied to optimize T9P. However, in this case
Equation 4.9 does not have analytical solutions, therefore it has to be solved numerically.
Regrettably, we did not do that.

13“On-the-fly” means that term selection is repeated during filtering (every time a new training doc-
ument becomes available via feedback) in contrast to one-time term selection (just before training clas-
sifiers) in classification/categorization tasks.
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The technique we used, lowers the threshold after every “quiet” month with respect
to how many documents are missing according to the pro-rata adjusted MinD value. It
goes as follows:

1. Right after a query update, start collecting the document scores in the range [µnr, θ],
where µnr is the mean score of the N+ documents and θ the optimal S-D threshold
for U = R+ − N+.

2. If after one month of documents nothing is retrieved, calculate how many should
have been retrieved by the current time (pro-rata).

3. Check how many are missing:
m = pro-rata−retrieved.

4. If m > 0, lower the threshold to sm, where sm the top-m score seen below θ.

The method works, in the sense that it retrieves around MinD documents or more.
Moreover, it retrieves the ones that score the highest. It assumes, however, that the
distribution of relevant documents in the stream is uniform (or their relative density is
approximately constant), in general a false assumption. Another drawback of the method
is that it optimizes the threshold for U = R+ − N+ and not for precision. All of these,
we believe, make our submitted T9P runs moderately satisfactory.

After all, we should have at least tried to solve Equation 4.9 numerically. Although
analytical formulas are mathematically more elegant, in practice, numerical methods are
efficient and easy to implement.

5.5.6 Experiments with FilterIt

The FilterIt system presents two features which we are interested in comparing their
effectiveness with other systems: the practical S-D threshold optimization for linear util-
ity functions (see Section 4.5.3), and the decay of training documents (see Section 5.5.2).
The tuning parameters were numerous, and the runs allowed for submission to TREC-
9 were limited to 4 for adaptive and to 2 for batch filtering (including batch-adaptive).
Moreover, we submitted one of the two batch filtering runs with the lcs system described
in Section 5.6. These limits do not allow extensive comparisons, and some choices had
to be made.

Our strategy in deciding what to submit was as follows. For two of the four adaptive
runs we did not use any of the two features but rather conventional techniques. In
this way, we expected to have at least two runs with conventional effectiveness, in case
our techniques would have failed. The other two adaptive and the single batch filtering
runs combine all the new features. All parameters were set at “safe” values, as these
were determined by our experiments with the Financial Times (FT) collection. More
aggressive settings have yielded better effectiveness on FT, however, we do not believe
that these generalize to all collections.
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5.5.6.1 Rocchio Parameters and Initial Query Elimination

All adaptive runs use α = β = γ for Rocchio. These tasks start with a query and only 2
relevant training documents. In pilot runs on FT, traditional settings with α < β seemed
to overfit the classifiers on those 2 relevant documents. Therefore, such small training sets
should not be trusted and the initial query Q0 should be weighted fairly high, e.g., as high
as α = β. As a filter is collecting more and more relevant documents, the contribution
of the initial query can gradually be eliminated. Consequently, we moreover multiply Q0

with 10/(Rn + 10) while calculating the new query Qn. We do not use such an initial
query elimination for the runs with decay since the initial query decays anyway.

For the batch-adaptive task, α is set at one-fourth of β. Since larger training sets
are given for this task, the danger of overfitting is smaller. When using query zones14,
(Singhal et al., 1997) have shown that β = γ is a reasonable setting. This explains why
we set β = γ also for the adaptive tasks. Thresholding document scores during filtering
can been seen as a form of on-the-fly query zoning . Any non-relevant documents retrieved
in this way are indeed the most interfering with the query. This setting has worked out
well for us in our experiments on FT.

5.5.6.2 Submitted Runs

Table 5.3 summarizes the runs we submitted, their parameter settings, and the final
results obtained.

Task adaptive batch-adapt.
Run KUNa1T9U KUNa2T9U KUNa1T9P KUNa2T9P KUNbaT9U

Rocchio α = β = γ 4α = β = γ
Q zone no — on-the-fly top-r

Q0 elim. 10/(10 + Rn) no 10/(10 + Rn) no no
θ for T9U T9U T9P T9P T9U

method (µr + 2µnr)/3 S-D (µr + µnr)/2 S-D S-D
half life ∞ 2 yrs ∞ 2 yrs 2 yrs

TS-cutoff — 500 — 500 500
Result +16.8 +17.3 0.258 0.231 +19.4

Table 5.3: Settings and results for the (batch-)adaptive submitted runs.

KUNa1T9U and KUNa1T9P do not use decay, term selection, or the threshold opti-
mization described in this article. The threshold per topic is set at the midpoint of the
average scores of relevant and non-relevant documents. In fact, for KUNa1T9U we set
thresholds at one-third of the distance between the non-relevant and the relevant mean
score to reflect the fact that the gain of retrieving a relevant document is double the cost
of retrieving a non-relevant one (definition of T9U). Therefore, the thresholds should be
lower than the midpoints to retrieve more relevant documents.

KUNa2T9U and KUNa2T9P use a decay for training documents with half life set to
2 years; we have found this value reasonable for filtering medical articles. Term selection
cutoff is set at the top-500 terms; a light cutoff because our threshold optimization seems

14A brief description of query zoning is given in Appendix A.4
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to require at least 250 terms in a classifier (Section 4.4.1), and moreover, long classifiers
are necessary when tracking relevance drifts (Arampatzis and van der Weide, 2001).
Thresholds are S-D optimized, however, not exactly as we have described in Section 4.5.

Our S-D method was in an early stage at the time of submission. What we did
was to approximate the N+ document scores with a Gaussian. Repeatedly adapting a
query causes the distribution of non-relevant retrieved document scores to look more
like a bell-shaped distribution. This is an artifact of re-training, however, and does not
correspond to what is really happening below the threshold. Nevertheless, it has worked
out reasonably, suggesting that a Gaussian approximation may be usable since it still
gives some estimation of the spread of the non-relevant scores; however, it is of dubious
accuracy. We will come back to this in Section 5.5.6.6.

For KUNbaT9U (batch-adaptive) we basically use the same settings as for KUNa2T9U,
except for the Rocchio parameters. Moreover, we apply document sampling and query
zoning (Singhal et al., 1997). The training stream (OHSUMED 1987) consists of around
54,000 documents, and only a few of them are relevant for a topic. For efficiency reasons
we do random sampling with probability 0.1 to reduce the number of non-relevant train-
ing documents. Then we apply query zoning to select and use for training only the top-r
scoring non-relevant documents, where r is the number of relevant training documents.
We calculate the query zone with Equation 5.3 for γ = 0.

The adaptive runs do not show large differences in effectiveness, mainly because of
the modest parameter settings for term selection cutoff, half life value, and the fact that
the S-D threshold optimization technique is triggered only when at least 5 relevant and
5 non-relevant training documents are made available. Many topics did not reach these
numbers, so they were actually filtered with thresholds set at weighted midpoints.

Next, we provide the extra runs we made in order to find where some of the parameters
of FilterIt peak, and determine which techniques actually work. All runs reported
here use (unless otherwise noted): query zoning to select for training only the top-r
non-relevant documents, term selection cutoff set at 500, no decay, and thresholds set at
weighted midpoints for T9U.

5.5.6.3 Document Sampling and Query Zoning

We have investigated the effect of sampling the non-relevant document space. We have
run a batch-adaptive task with 3 different samples. Table 5.4 presents T9U and F -
measure results. All samples are made by selecting randomly one out of ten non-relevant

sample T9U F1

A (official) 19.5 0.406
B 19.8 0.406
C 19.1 0.403

Table 5.4: The effect of sampling the non-relevant training document space.

training documents from OHSUMED 1987. Then query zoning is applied before training
the initial classifier. The results do not show significant differences.
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5.5.6.4 Term Selection

Figure 5.3 shows the impact of our term selection method (see Section 5.5.4) for different
cutoff values. The runs are batch-adaptive using sample A. The average T9U seems to
peak between 500 and 125 terms.

5.5.6.5 Decay

We have experimented with different half life values on an adaptive task. Figure 5.4
shows that the average T9U peaks somewhere between 2 and 8 years of half life. However,
further analysis has revealed that effectiveness peaks at considerably different half life
values across topics. An optimization of half life per topic — if we only had a way to do
that — would have resulted in great improvements of the average T9U.

5.5.6.6 Threshold Optimization

In Appendix C.3 we give the TREC-9 evaluation table of our submitted batch and batch-
adaptive runs. We have made a supplemental batch-adaptive run with the revised S-D
threshold optimization as described in Section 4.5, i.e. by fitting an exponential on the
top-50 non-relevant training documents15. When the non-relevant training document
buffer exceeds 50 documents, we sort them according to their scores and discard the
lowest scoring one. The results are presented in the last column, labeled as FilterIt-ba.
They show an improvement in the average T9U from 19.4 to 21.3.

One could argue that setting thresholds with the weighted midpoint method works out
comparably to the S-D optimization (compare e.g. KUNa1T9U to KUNa2T9U), but this
is not the case. In fact, the good performance of the weighted midpoint method has been
purely accidental; the same goes for the aforementioned Gaussian fit on non-relevant
document scores. The mean score of non-relevant documents µnr has been estimated
on the top-scoring non-relevant documents. This produces a relatively large µnr, which
in its turn results in tight thresholding. When we have tried to increase the number
of non-relevant documents, the weighted midpoint method as well as the Gaussian fit
have greatly failed: the more non-relevant documents are used for training, the lower
the µnr, thus lower thresholds. The methods fall too easily into the selectivity trap of
retrieving too many (mostly non-relevant) documents. The revised S-D optimization, as
described in Section 4.5, has proved much more reliable and robust in a range of settings,
consistently avoiding such selectivity traps.

15Note that we have not optimized any other parameter according to our post-official runs; we have
merely used a better S-D optimization.
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5.6 The lcs System

The routing and batch filtering tasks were carried out16 by the lcs system17 (Ragas and
Koster, 1998). The system is based on the Winnow mistake-driven learning algorithm
(Littlestone, 1988). The Winnow algorithm has, to our knowledge, not been used before
in TREC. It can cope well with large numbers of terms, which is certainly the case here:
after pre-processing, the training set had some 52,000 different terms.

5.6.1 The Winnow Algorithm and Improvements

During training, the Balanced Winnow algorithm (Littlestone, 1988; Dagan et al., 1997)
iteratively computes two weights w+

i,C and w−
i,C for every term i and class (topic) C.

These winnow weights are used to compute the score S(D,C) of a document D for the
class C as:

S(D,C) =
∑

i∈D

(w+
i,C − w−

i,C) ∗ ui,D , (5.11)

where ui,D is the term strength (weight) of term i in document D. Classification is
achieved by thresholding S(D,C) using a threshold θ.

Winnow is mistake-driven in the sense that it adjusts the weights w+
i,C and w−

i,C only
if their current value, during an iteration, leads to a misclassification. If a relevant doc-
ument scores below θ, then the winnow weights for the terms occurring in the document
are multiplicatively updated using a promotion factor Alpha. Similarly, for a non-relevant
document scoring above θ, the weights are demoted using a demotion factor Beta. The
threshold θ is considered fixed, and the learning stops when there are no weight updates
during an iteration, or earlier even in order to avoid over-training. Topic descriptions
were considered as normal documents, since Winnow provides no special mechanism for
dealing with requests.

The implementation of Winnow in lcs is similar to the one described in (Dagan et al.,
1997), with two modifications:

1. the document terms ui,D are ltc weighted (Buckley et al., 1994), without the vector
length normalization factor. Traditionally, ui,D are set either to the frequency of i
within D, or to the square-root of the frequency. In experiments on the FT corpus,
ltc has proved to work definitely better than the former, and slightly better than
the latter.

2. Winnow weights were initialized for training as:

w+
i,C =

2θ

ADS
, w−

i,C =
θ

ADS
, ADS = AV GD

∑
i∈D ui,D

size(D)
,

where size(D) is the number of unique terms in document D. This initialization
improves Winnow’s convergence speed.

16All methods and experiments described in Section 5.6 are attributed to my colleague Jean Beney,
who joined KUN during his sabbatical leave from INSA de Lyon.

17Esprit project DOcument ROuting (DORO): http://www.cs.kun.nl/doro
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The convergence speed of the Winnow algorithm (the number of iterations needed to learn
a stable classifier) depends rather critically on the initial values of the weights. In (Dagan
et al., 1997), all positive weights are initialized as θ/d, where θ is the threshold and d
the average number of “active features” in documents. This choice ignores collection
statistics for terms. In our initialization, an average document obtains an initial score
equal to θ. Since term strengths are taken into account, fewer iterations are needed.

5.6.2 Threshold Setting by Cross-evaluation

The Winnow algorithm has a “natural” threshold θ = 1.0 for separating relevant from
non-relevant documents, giving rather equal utility to retrieving a relevant document and
rejecting a non-relevant one. T9U stresses relevant documents more than non-relevant,
however. The S-D threshold optimization has not (yet) been implemented in the lcs, so
the necessary threshold optimization was performed by cross-evaluation.

The training set (OHSUMED 1987) was split into n subsets of the same size, which
each in turn was used as optimization test set while all the other subsets, together with
the topic descriptions, were used as optimization training set . The scrap of the split
was included into the optimization test set. After training Winnow with n − 1 subsets,
the documents of the remaining subset (optimization test set) were ranked according to
their scores. Then, by going down the rank, the threshold value that optimized T9U was
found. We performed the cross-evaluation for n = 2, 3 and 4, and we took the mean of
all (2 + 3 + 4 = 9) optimal threshold values.

5.6.3 Experiments with lcs

5.6.3.1 Submitted Runs

We set the Winnow parameters to the values that gave the best results on the FT corpus
(Table 5.5). We use the thick separator heuristic (Dagan et al., 1997): instead of a
single threshold θ, a threshold range [θ− : θ+] is used. There is a promotion whenever
a relevant document obtains a score below θ+ and a demotion when a non relevant
document gets a score over θ−. This heuristic achieves a better separation between
relevant and non-relevant documents. The asymmetry around the standard threshold
(1.0) forces the algorithm to perform more promotions than demotions on the early
iterations. This compensates for the asymmetry between the numbers of relevant and
non-relevant training documents, speeding up convergence.

parameter value
Alpha 1.1
Beta 0.9
ThresholdRange on
θ+ 1.3
θ− 0.9
MaxIters 30

Table 5.5: Winnow Parameters.
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We have submitted 2 routing runs, KUNr1 and KUNr2. lcs has originally been
developed for mono-classification tasks, i.e., each document belongs to exactly one class.
This means that the relevant training documents for one class are considered as non-
relevant training documents for all other classes. That is certainly not the case in filtering,
so we had to do separate runs per topic assuming two classes: relevant and non-relevant.
The routing results KUNr1 were produced like this.

The approach of separate runs is correct but obviously inefficient. So, we also tried
to process all topics at once (KUNr2), hoping that they do not have relevant documents
in common, or even if they do, the impact of this approach on effectiveness would not be
that great. Luckily, in the given dataset, it was not: the average uninterpolated precision
was practically the same. We obtained 0.237 for KUNr1 and 0.234 for KUNr2.

The batch filtering run KUNb was obtained through the thresholding of the rankings
of KUNr1. Thresholding was performed by the cross-evaluation method described in
Section 5.6.2.

5.6.3.2 Other Runs

The KUNb results, obtained with separate thresholds per topic calculated by cross-
evaluation, can be compared with those obtained by a simpler method: a uniform thresh-
old for all topics. We can choose as a uniform threshold any value in the threshold range;
such a choice should give the same result if the classification is perfect. But two values
are special: 1.0 (average document score before training), and 1.1 (the center of the
threshold range).

Table 5.6 shows that the results for θ = 1.0 are worse than those for θ = 1.1. Moreover,
a uniform threshold set at 1.1 gives slightly better results than the separate thresholds
computed by cross-evaluation. It seems that the cross-evaluation method has failed,
mainly because the training sets had relatively small numbers of relevant training docu-
ments. Splitting the sets for cross-evaluation, made things even worse.

Run T9U
separate θ’s via cross-evaluation (KUNb) 5.0

uniform θ = 1.0 −3.5
uniform θ = 1.1 6.0

best possible thresholdings on KUNr1 17.9

Table 5.6: Different thresholdings on Winnow.

The best possible thresholdings on the rankings of KUNr1 would have obtained an
average T9U of 17.9; not very good either, considering that the largest possible average
T9U for the given test set is 104.9. This implies that the rankings achieved are not very
good. Winnow does not perform well for small numbers of relevant training documents.
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5.7 Overall Comparison and Discussion

In Appendix C.4 we give the TREC-9 evaluation table of our submitted routing runs
with the lcs system. The right-most column, FilterIt-r, corresponds to a supplemen-
tal routing run with the FilterIt system. Obviously, FilterIt gives better rankings
than lcs; the corresponding average uninterpolated precision figures are 0.373 and 0.237.
Thresholding the rankings of FilterIt-r with the optimal S-D thresholds (as these
were estimated by the method described in Section 4.5.3) we obtained a (non-adaptive)
batch run with FilterIt. Its results are presented under the label FilterIt-b in Ap-
pendix C.3. An average T9U of 14.8 is obtained in contrast to 5.0 obtained by lcs.

Since FilterIt-r and FilterIt-b are not post-factum optimized, it seems that we
should have submitted all runs, for all filtering tasks, with the FilterIt system. The
FilterIt-r routing run, with an average precision of 0.373, would have ranked us as
second best system; the first system scored at 0.385. The FilterIt-b batch run, with
an average T9U of 14.8, would have ranked us clearly as the best system; the best official
batch run scored at 7.5. All official TREC-9 runs of the tasks we have participated are
given in Tables 5.7 and 5.8.

Adaptive filtering — OHSU topics
T9U Run T9P Run

17.349 KUNa2T9U 0.294 ok9f1po
16.762 KUNa1T9U 0.288 ok9f2po
10.746 ok9f3uo 0.279 CMUDIR16
10.095 CMUDIR17 0.267 CMUDIR14
9.698 ok9f1uo 0.265 FDUT9AF3
9.556 FDUT9AF2 0.264 FDUT9AF1
9.270 CMUDIR15 0.258 KUNa1T9P
1.143 reliefs1 0.249 FDUT9AF4

-5.873 IOWAF001 0.230 KUNa2T9P
-32.270 antadapt001 0.224 CMUCAT5
-35.302 kddaf903 0.213 CMUCAT3
-35.492 kddaf905 0.168 reliefs2
-35.857 kddaf906 0.138 IOWAF003
-36.381 kddaf904 0.102 antadapt002
-43.571 antadapt002 0.088 antadapt001
-55.683 pircT9U1 — —
-69.143 pircT9U2 — —

Table 5.7: TREC-9 adaptive filtering runs with OHSU topics.

At any rate, we are very satisfied with the performance of the FilterIt system in our
official runs. We have clearly achieved the best scores in all adaptive and batch-adaptive
tasks optimized for T9U. Compare the 17.3 (KUNa2T9U) and 19.4 (KUNbaT9U) to the
10.7 and 13.6 of the second best systems in the corresponding tasks. The official T9P runs
are also satisfactory; our best run has achieved 0.258 (KUNa1T9P), a rather comparable
effectiveness to the 0.294 of the best system. After all, we have not optimized exactly
for T9P, but for some other related utility measure, in order to simplify the calculations
(see Section 5.5.5).
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Batch filtering — OHSU topics Routing — OHSU topics
(∗ indicates batch-adaptive)
T9U Run Av. Prec. Run

19.365 KUNbaT9U∗ 0.385 S2RNr2
13.587 FDUT9BF1∗ 0.343 S2RNr1
7.460 mer9b1 0.326 ok9rf2po
5.048 KUNb 0.317 ok9rfr2po
2.778 scai00 0.237 KUNr1
1.095 mer9b2 0.235 mer9r1

— — 0.234 KUNr2
— — 0.185 Mer9r2
— — 0.177 antrpnohsu00
— — 0.099 antrpohsu00
— — 0.081 lsir1

Table 5.8: TREC-9 batch filtering and routing runs with OHSU topics.

Why are the results with the lcs less satisfactory? According to our experience, Win-
now performs better than Rocchio when large numbers (hundreds) of relevant training
documents are available for each class. This was not the case in the batch and routing
tasks of TREC-9 where some topics had very few relevant training documents. This may
largely be responsible for Winnow’s weak performance. Furthermore, with 30 iterations
in the learning phase, there is some evidence of overtraining.

Why are the results with FilterIt so good? Let us summarize the methods we have
used: accurate and incremental adaptivity as soon as a single training document becomes
available (in contrast to re-training in batches), local adaptivity (training documents of
decaying value in time), on-the-fly term selection (in contrast to just cutting off clas-
sifiers), the S-D threshold optimization (note that we are talking about “optimization”
rather than “setting”), and initial query elimination. Moreover, all parameter settings
(e.g. Rocchio’s α, β, γ, term selection cutoff, half life) have either been empirically deter-
mined on the Financial Times collection or at least motivated. There is evidence as well
that Ltu weighting and query zoning have contributed considerably to effectiveness. The
FilterIt system is a typical example of: the whole is more than the sum of its parts .
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5.8 Summary

In this first-time contribution to TREC, we have focussed mainly on the adaptive tasks.
Our contribution to adaptive filtering has been threefold:

• We have investigated the value of retrieved documents as training examples in
relation to their time of retrieval. For this purpose, we have introduced the notion
of the half-life of a training document. The approach has presented promising
results.

• We have put in practice the score-distributional (S-D) threshold optimization method,
capable of optimizing any effectiveness measure defined in terms of the traditional
contingency table. The method has found to be very effective, and it can moreover
be applied incrementally.

• We have developed a system that allows incremental adaptivity , minimizing its
computational and memory requirements without sacrificing too much accuracy.

Overall, we are very satisfied with our adaptive results; we have clearly achieved the best
utility scores in all adaptive and batch-adaptive tasks that we have participated in. The
results of the batch and routing tasks are less satisfactory, but at least the feasibility of
using the Winnow algorithm in these applications has been demonstrated.

Summarizing, our TREC-9 participation has motivated a great deal of research. As
a result, we have finalized the S-D threshold optimization as described in Chapter 4, and
we have re-considered the nature of the filtering task as described in Chapter 2. Our
plans for further research include: finding a way of detecting relevance drifts in order
to select appropriate half life values, and to revise the term selection method we have
introduced in Chapter 3.
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Chapter 6

Linguistically Motivated Indexing

This chapter summarizes our theoretical work in the area of using natural language
resources and processors for information seeking tasks. Although our main concern is in-
formation filtering, the ideas apply to all information seeking tasks which involve indexing
of textual information objects. Therefore, we discuss the issues assuming an information
retrieval context. The chapter is based on our previously published work in (Arampatzis
et al., 1998) and (Arampatzis et al., 2000b).

6.1 Introduction

Information retrieval (IR) has been developed to provide practical solutions to people’s
need to find the desired information in large collections of data. The IR task can be seen
as the “digital twin” of the task of a person looking in a library for material relevant
to a certain subject. In both cases, the searcher has an information request that has to
be translated to library indices or query terms. Then it is submitted to some system —
library catalogue or computerized retrieval system — and the system in turn suggests
(retrieves) relevant material. The searcher will usually find that some of the suggested
documents are not actually relevant, and will also suspect that some relevant documents
might have been missed. For static collections, the effectiveness of such a search can
be quantified using two metrics, precision and recall (Appendix A.5). For an extended
introduction to the IR problem, its history, widely accepted techniques, and retrieval
evaluation metrics, the reader should refer to the classical books (Salton and McGill,
1983) and (van Rijsbergen, 1979); for a collection of classical articles in IR, to (Jones
and Willett, 1997).

The tremendous increase over the last decade in information in digital form has led
to a new challenge in IR. A World Wide Web search today retrieves a large number of
hits, and usually imposes the tedious task of going through hundreds of irrelevant hits on
the user. Although IR has been in existence for more than three decades (and as a part
of library science even longer), modern technology for its part is still based on a simple
assumption that often leads to unsatisfactory results. Restricting the problem to textual
data, the assumption, implicit or explicit, upon which most commercial IR systems are
based, is that
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Definition 1 (naive keyword retrieval hypothesis) If a query and a document have
a (key)word in common, then the document is to some extent about the query.

Of course, if they have more keywords in common, then the document is more about the
query. Moreover, the keywords are usually augmented with weights indicating their im-
portance as information discriminators. In this respect, the IR problem is represented by
matching the “bag” of keywords in the user’s query with the bag of keywords represent-
ing the documents. The output of such a matching is usually a ranked list of documents
with the most relevant first and the least relevant last.

This relatively simple representation is the computer age equivalent of library cata-
logues, and carries the same inadequacies. The most obvious inadequacies originate from
linguistic variation, making the keyword retrieval hypothesis insufficient because

1. it does not deal with morphological variation which produces keywords in singular
and plural form, for instance wolf and wolves , or different cases, such as man and
man’s . (Dealing with cases is trivial for English, but it is crucial for other more
inflected languages like German or Greek).

2. it does not handle cases where different words are used to represent the same
meaning. For this phenomenon we use the term lexical variation. The result is
that a query with the keyword film does not retrieve documents that contain its
synonym, movie.

3. it does not distinguish cases where single words have multiple meanings due to
semantic variation. A singer looking for bands will be faced with radio frequency
bands as well.

4. it does not deal sufficiently with syntax . The problem is twofold.

(a) accidental co-occurrence: A document that contains the phrase near to the
river, air pollution is a major problem is not about river pollution, although
both keywords occur in the document, and certainly science library is not the
same as library science.

(b) syntactic variation: This problem shows up in retrieval models which use
exact phrase matching, rather than in keyword-based models. For example,
polluting the river and pollution of the river are both about river pollution, but
looking only for the literal occurrence of the latter phrase will miss documents
containing any of the first two phrases.

Both problems of accidental co-occurrence and syntactic variation can be dealt with
by taking into account the syntax.

Linguistic variation degrades the effectiveness of IR systems in terms of precision and
recall. On the one hand, morphological and lexical variation hurts recall. On the other
hand, semantic and syntactic variation hurts precision. However, trying to improve recall
usually decreases precision and vice versa.
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Linguistic variation in the IR context may be interpreted as meaning that language is
not merely a bag of words. Language is a means to communicate about concepts, entities,
and relations, which may be expressed in many forms. Word order may matter (as in
science library vs. library science) or may not (general director vs. director general).
Moreover, words combine to form phrases and other larger units with a meaning that
may not be directly inheritable from the individual words. For example, a hot dog ,
either hot or not, has nothing to do with dogs. Given such considerations, it has been
conjectured many times that a better representation should also include groups of words
(phrases) and some form of regularization of words, word order, and meaning. Indeed,
many researchers have developed such techniques.

This chapter discusses a retrieval schema that attempts to overcome some of the
problems originating from the keyword retrieval hypothesis and linguistic variation. In
the next section, we will review some of the most important attempts made to deal
with linguistic variation. In the rest of the chapter, we will discuss the key aspects
of a linguistically motivated retrieval system. Starting in Section 6.3 from a phrase
retrieval hypothesis — a naive extension of the keyword retrieval hypothesis — we will
address a suitable representation of phrases for IR in Section 6.4. In Section 6.5, possible
regularizations of natural language will be outlined. The weighting of phrasal indexing
terms and their matching will be discussed in Section 6.6. An example architecture of
such a linguistically motivated retrieval system will be depicted in Section 6.7. We will
draw some conclusions in the final section.

6.2 Related Research

The problems of linguistic variation have been noted by many researchers, who have
answered with various techniques. Many of these techniques employ natural language
processing (NLP) and such language resources as online dictionaries and thesauri. The
results until now have been inconsistent, making it difficult to reach a conclusion about
their effectiveness.

In this section, we review some approaches and their outcomes for each of the mor-
phological, lexical, semantic, and syntactic variation. Special attention is given to three
studies which we consider representative and closely related to the approach we are go-
ing to take in this chapter. These studies are the works of the IR group at Dublin City
University, the Clarit group, and Strzalkowski et. al. (Strzalkowski and Carballo, 1995;
Strzalkowski et al., 1997).

6.2.1 Morphological Variation

Morphology is the area of linguistics concerned with the internal structure of words. It is
usually broken down to two types, inflectional and derivational . Inflectional morphology
describes the predictable changes a word undergoes as a result of syntax, and has no
effect on the word’s part of speech (e.g., a noun remains a noun) and little effect on its
meaning. The most common changes are the plural and possessive forms of nouns (e.g.,
computer, computers, computer’s), comparative and superlative form of adjectives (e.g.,
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good, better, best), and the past tense, past participle, and progressive form of verbs (e.g.,
compute, computed, computing). On the contrary, derivational morphology may or may
not affect part of speech or meaning (e.g., computerize, computerization).

Two ways have generally been followed to deal with morphology in IR trying to
increase recall. These are variant query expansion and stemming . In variant query
expansion, morphological variants of keywords are added to the query. Stemming simply
strips a word’s suffix to reduce it to its stem, assuming that keywords with a common
stem usually have similar meanings. Variant query expansion and stemming can been
regarded as equivalent and the choice depends on the nature of the particular application.
We will concentrate on stemming as the choice that is made the most.

Stemming can be done in a linguistic fashion, taking into account the function and
the part of speech of a word, or in a nonlinguistic fashion, disregarding a word’s context.
Lovins and Porter developed nonlinguistic algorithms for suffix stripping based on a
list of frequent suffixes to reduce words to their stems (Lovins, 1968; Porter, 1980). It
is a common belief that stemmers improve recall without losing too much precision,
however, a comparison of the Lovins stemmer, the S stemmer, and the Porter stemmer
with a baseline of no stemming at all, concluded after detailed evaluation that none
of the three stemming algorithms consistently improves retrieval for English documents
(Harman, 1991). It was argued that the evaluation measures were not appropriate,
and new measures were proposed for evaluating the performance of different stemming
algorithms (Hull, 1996). After experimentation, it was concluded that stemming is almost
always beneficial for English, except for long queries at low recall levels. A more reliable
version of Porter’s stemmer was developed, which uses a dictionary to validate the result
after every suffix-stripping step. This revised Porter stemmer resulted in improvements
in retrieval performance for English documents, especially short ones (Krovetz, 1993).

Research with other morphologically more complex languages such as Slovene showed
an improvement in effectiveness using a Porter-like stemmer modified for Slovene (Popovic
and Willett, 1992). In the same study, when the Slovene corpus was translated to En-
glish and the experiment was repeated, there was no improvement in retrieval. For Dutch
texts, it was found that linguistic inflectional stemming improves recall without signifi-
cant loss in precision, while derivational stemming, although sometimes useful, in general
reduces precision too much (Kraaij and Pohlmann, 1996b).

6.2.2 Lexical Variation

Lexical variation has generally been treated in two ways. On the one hand, by lexical
query expansion with semantically related terms (e.g., synonyms), and on the other hand,
the matching of query and document keywords via conceptual distance measures . For
these purposes, thesauri have been exploited to supply related query terms, and semantic
networks such as that of WordNet (Miller, 1995) to define semantic distance measures
between words.

The choice of semantically related terms for a word depends on the context in which
the word is used; thus, the context specifies the word’s sense. When a word can be used in
different senses, the problem of word sense ambiguity arises. Most of the techniques that
deal with lexical variation require prior word sense disambiguation, and that makes these
techniques strongly dependent on semantic variation (described in the next section).
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Query expansion with WordNet has shown a potential in enhancing recall since
it permits the matching of relevant documents that do not contain any of the query
terms (Smeaton et al., 1995). Expansion of queries using synonymy and other semantic
relations supported by WordNet showed that short and incomplete queries can be
significantly improved, yielding better retrieval effectiveness (Voorhees, 1994). However,
this query expansion technique made little difference in the effectiveness, for relatively
complete descriptions of the information sought. For Dutch texts, synonym expansion
was reported as potentially useful (Kraaij and Pohlmann, 1996a).

Experiments on a small collection of image captions (i.e., very short documents) using
measures of semantic similarity distance between words based on WordNet showed im-
provements in retrieval (Smeaton and Quigley, 1996). However, their earlier experiments
with word-to-word semantic similarity measures resulted in a drop in effectiveness, due
to the effects of erroneous word sense disambiguation (Richardson and Smeaton, 1995).

Another approach, based on indexing in terms of WordNet’s synonym sets (synsets)
instead of wordforms, yielded successful results when queries were fully disambiguated
(Gonzalo et al., 1998). If queries are not disambiguated, indexing by synsets at best
performs only as well as standard word indexing.

6.2.3 Semantic Variation

Semantic variation has strong impacts on lexical query expansion, on matching based
on word-to-word semantic distance similarity measures, and on conceptual indexing.
The success of these techniques requires prior disambiguation of word senses, as many
researchers have noted (Voorhees, 1994; Kraaij and Pohlmann, 1996a; Smeaton and
Quigley, 1996; Gonzalo et al., 1998). Most of the research has concentrated on how large
the impact of semantic variation and its inaccurate resolution is on IR effectiveness.

It is estimated that if word sense disambiguation is performed with less than 90% ac-
curacy the retrieval results are worse than not disambiguating at all (Sanderson, 1994).
Poor retrieval results have been blamed on this reason in previous research (Richard-
son and Smeaton, 1995). Conversely, in the same experiments (Sanderson, 1994) word
sense ambiguity was shown to produce only minor effects on retrieval accuracy, appar-
ently suggesting that query–document matching strategies already perform an implicit
disambiguation. In this experimental setup, ambiguity was introduced artificially by sub-
stituting randomly selected word pairs such as bank and spring with ambiguous terms
like bank/spring . This setup has two disadvantages, first, real ambiguity might not be-
have like the artificially introduced one, and second, the disambiguation of an artificially
ambiguous term is only partial; when bank/spring is disambiguated as bank , bank is still
ambiguous as it can be used in more than one sense in a text collection (Gonzalo et al.,
1998).

6.2.4 Syntactic Variation

The techniques developed to deal with syntactic variation may be grouped in two cat-
egories: the addition of phrases to queries, and the use of syntactical structures for
indexing. These techniques intend to increase retrieval precision.
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A phrase is a group of words, and historically what has been referred to as a phrase in
the IR context varies significantly among researchers. The hypothesis for using phrases
has been that they denote more meaningful entities or concepts than single words; thus
they may constitute a better representation. Indeed, the use of phrases has become
common in IR; many systems participating in the Text REtrieval Conferences (TRECs)
now use one or another form of phrase extraction (Voorhees and Harman, 1997).

Traditionally, two types of phrases have been used, statistical and syntactic. Statisti-
cal phrases are any series of words that frequently occur contiguously in a text collection.
Syntactic phrases are any set of words that satisfy certain syntactic relations or constitute
specified syntactic structures. Statistical phrases are extracted using word frequency and
co-occurrence information, while syntactic phrases usually require sophisticated NLP
techniques. Which of the two types is more useful for IR remains unclear; syntactic
phrases seem to offer an advantage that is statistically rather insignificant (Fagan, 1987;
Mitra et al., 1997; Kraaij and Pohlmann, 1998). Small statistically insignificant im-
provements were found for Dutch texts (Kraaij and Pohlmann, 1998). Other research
concluded that phrases do not have a major effect in precision at high ranks, but are
more useful at lower ranks (Mitra et al., 1997).

6.2.5 The IR work at Dublin City University

The IR group at Dublin City University tried the use of indexing structures derived
from syntax. We review the approach and results from their participation in TREC-3
(Smeaton et al., 1994), since that was their last attempt to use syntactic phrases.

In their approach, documents and queries were represented by TSAs (tree structure
analytics) constructed at the clause level. These TSAs were directly derivable from
a morpho-syntactic analysis of input text, and were formulated to encode within their
structures the most commonly occurring syntactic ambiguities due to prepositional phrase
attachment, conjunction, and others. In case of ambiguity, the TSA matching algorithm
weights various (syntactic) interpretations at the time of retrieval. This TSA matching
algorithm is able to measure the degree of overlap between input phrases which may or
may not be about the same topic, but which use the same words albeit sometimes in
different contexts. The degree of overlap is inferred from the structure roles different
words play in phrases, acting as heads, as modifiers or as attachments.

The group conducted an experiment on category B of TREC-3 (i.e. on 550 Mbytes
of the Wall Street Journal), and reported failure. The implementation was based on a
two-stage retrieval. Firstly, a statistically-based pre-fetch retrieval ranked the collection.
Then the computationally expensive language-based processing was applied to the 1000
top-ranked documents in order to re-rank them.

The experimental results were disappointing and unexpected (both recall and preci-
sion were decreased). The group posed some possible reasons for the poor results:

• The language analyzer used was of poor quality.

• The type of language used in TREC topic descriptions is very different to that
used in document texts (interrogative vs descriptive language), and the two types
of language should have been treated differently.
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• Maybe the combination of independent retrieval strategies (pre-fetch using tf× idf
and TSA-based weighting in this case) would have bootstrapped the performance of
individual strategies (this has been shown before by a number of groups in TREC-3
and elsewhere). Maybe the TSA-based retrieval could have retrieved documents
that were not retrieved by the term weighting strategy, especially if these documents
had a few words in common with a query but these words played the same or similar
structural roles in the query and in the document.

The results led the group to conclude that the approach of using syntax to determine
structural relationships between words and to use them as a part of an information
retrieval strategy, does not work. Since then, the group has abandoned this strategy and
it concentrated on the use of NLP resources (such as machine-readable dictionaries and
knowledge bases) to improve retrieval.

6.2.6 The Clarit work

The Clarit system has several NLP techniques integrated with the vector space retrieval
model (Zhai et al., 1996). These techniques include morphological analysis, robust noun-
phrase parsing, and automatic construction of thesauri. Clarit’s indexing emphasizes
phrase-based indexing with different options for decomposing noun phrases into smaller
constituents, including single words.

The goal of the Clarit TREC-5 NLP experiment was to test two hypotheses:

1. The use of lexical atoms, such as “hot dog”, to replace single words for indexing
would increase both precision and recall.

2. The use of syntactic phrases, such as “junior college” to supplement single words
would increase precision without hurting recall, and using more such phrases results
in greater improvement in precision.

For the first hypothesis, lexical atoms were considered the high frequency word pairs
that tended not to be separated by other words within the context of noun phrases. The
only pairs considered were: two nouns, or one adjective followed by a noun. In both
TREC-5 and the preliminary experiments with TREC-4 topics, it was shown that the
use of lexical atoms leads to a slight but consistent improvement in average precision. On
the other hand, the use of lexical atoms did not consistently improve recall and initial
precision. In fact, it increased either recall or the initial precision. The inconsistent
influence of lexical atoms may indicate a need for better control over the selection of
phrases that are used for replacing single words.

For the second hypothesis, syntactic phrases were obtained from noun phrases (NPs).
The noun phrase parser used an expectation maximization algorithm to obtain statisti-
cal evidence of word modifications from the noun phrases in the corpus (Zhai, 1997). In
other words, they applied statistical methods to assign structure to those noun phrases
which had an ambiguous structure (all noun phrases of more than two words). The three
automatic official runs of the experiment corresponded to the following three levels of
term combinations: a) single words only, b) single words + head modifier pairs + full
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NPs, and c) single words + head modifier pairs + adjacent sub-phrases + full NPs. These
experiments in supplementing single words by various combination of syntactic phrases
in the indexing process showed a consistent and significant improvement in retrieval per-
formance. However, the impact of adding phrases into the index space varied according
to the query topic. Thus, while adding phrases helped some topics it hurt some others.

6.2.7 Natural Language Information Retrieval in TREC-4

The approach of (Strzalkowski and Carballo, 1995) in TREC-4 was rather successful.
They built an NLP module around a statistical full-text indexing and search backbone.
The NLP module was used to a) extract content-carrying phrases from documents, and
b) process user’s natural language requests into effective search queries.

All TREC-4 texts were processed with a syntactic parser. Phrases were extracted from
the parse trees and used as compound indexing terms in addition to single keywords.
Statistical methods were applied to resolve structural ambiguity. These phrases were
head-modifier pairs.

The user’s natural language request was also parsed to identify indexing terms. Highly
ambiguous, usually single-word terms were dropped, provided that they also occurred
in compound terms. Additionally, similarity relations, such as synonymy, hypernymy,
hyponymy, etc., were considered for query expansion. For example, “unlawful activity”
was added to a query containing the compound term “illegal activity”, via a synonymy
link between “illegal” and “unlawful”.

Two types of morphological normalization were performed: a) inflected word-forms
were reduced to their root forms as specified in the dictionary, and b) nominalized noun
forms were converted to the root forms of corresponding verbs (e.g. “implementation”
was converted to “implement”).

The experiments showed a substantial improvement in precision when phrasal terms
were used. A sharp increase in precision was achieved near the top of the ranking, which
brings further gains in performance via automatic relevance feedback. The researchers
cautiously suggested that NLP can be effective in creating appropriate queries out of
user’s natural language requests which can frequently be imprecise or vague. However,
the benefit from linguistic processing was tied to the length of queries: the longer a query,
the larger the improvement.

In subsequent TRECs, the group elaborated further on the techniques described here,
but NLP has not yet been proven to be as effective as they would have have hoped in
obtaining better indexing and representation of queries. Using linguistic terms does help
to improve precision, nevertheless, the gains remain quite modest (Strzalkowski et al.,
1997).
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6.2.8 Beyond the Bag-of-words Paradigm

Various attempts have been made to break out of the bag-of-words paradigm. Experi-
ments have shown considerable variation in retrieval effectiveness, making it difficult to
establish which techniques actually work and which do not. Summarizing:

• The effectiveness of stemming depends on the morphological complexity of a lan-
guage. Restricting the problem to English, there is a lot of variation in the results
of stemming experiments, and a number of factors seem to be of importance, e.g.,
linguistic vs. nonlinguistic stemming, stemming algorithm, query and document
length, and even evaluation measures.

• Lexical and semantic variation are strongly connected. It seems that dealing with
lexical variation is more beneficial for incomplete and relatively short queries.
Whether conceptual distance matching scales up to longer documents and queries
is still an unanswered question. Moreover, most of the relevant research has shown
that the successful application of these techniques is very sensitive to word-sense
ambiguity. However, word sense disambiguation techniques are still not well estab-
lished.

• It is still not clear how syntactic information can be used to improve retrieval
effectiveness consistently. Questions still remain about which phrases are useful,
in which cases, and how these should be extracted. Furthermore, NLP is still
nowhere near to becoming practical in dealing with large amounts of textual data
of unrestricted domain. Due to its lack of robustness and efficiency, compromises
have to be made. NLP techniques have mostly been used to add indexing terms
to a bag-of-words representation, and therefore trying to sharpen a keyword-based
search. In this way, the inadequacies of NLP have been softened; in the worst case,
a system will fall back on the original bag-of-words representation.

Although a lot of effort has been put into linguistically motivated retrieval schemes,
whether or not this is worth the trouble remains unclear. The evidence suggests the need
for further investigation and better modeling. In the rest of this study, we will describe a
retrieval scheme that demonstrates the application of linguistically motivated techniques.

6.3 The Phrase Retrieval Hypothesis

The goal of the indexing task is to assign characterizations (terms) to documents that
are deemed to best represent their content. Terms are usually derived from document
content. Every term used to characterize documents of the same collection can be seen
as adding a new dimensionality to the characterization. Terms should be assigned to
documents in such a way that documents on the same topic are positioned close together
in the hyper-dimensional document space, while those on different topics are placed
sufficiently apart. Terms can be anything from tri-grams and words, for example, to
linguistic-entities and concepts. In the two extreme cases, documents can be character-
ized by themselves (e.g., their document numbers), or all documents by exactly the same
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characterization. The former characterization positions documents as far apart as possi-
ble, resulting in no way of retrieving documents on the same topic. It is thus unusable
in the IR context. The latter provides no way of discriminating between different topics.
A suitable characterization must be usable and discriminating .

In a keyword-based representation, every document is characterized by a set of key-
words with weights representing the importance of each keyword in characterizing the
document. Keywords are usually derived directly from the document’s text. Keyword-
based representations are modestly usable and discriminating. Single words are rarely
specific enough for accurate representation (e.g., the word system does not say much,
whereas a HiFi sound system clarifies the meaning somewhat more). Moreover, a word
with a high frequency of occurrence in a document collection is not a good discriminator.
On the other hand, a phrase, even made up of high-frequency words, may occur in only
a few documents, thus becoming a good discriminator. These observations suggest that
a better characterization will make use of phrases; consequently, a naive phrase retrieval
hypothesis can be formalized as follows:

Definition 2 (naive phrase retrieval hypothesis) If a query and a document have
a phrase in common, then the document is to some extent about the query.

The phrase retrieval hypothesis does not solve the problems originating from the keyword
retrieval hypothesis and linguistic variation. On the contrary, it creates more questions,
such as what a phrase is and how it should be used for indexing or be weighted and
matched. We use this definition merely as a starting point, upon which we will build our
framework.

Phrases can be obtained using statistical or syntactic methods. Syntactic phrases
appear to be reasonable indicators of content, arguably better than proximity-based sta-
tistical phrases, since they account for changes in the word-order1 or other structural
constructions (e.g., science library vs. library science vs. library of science). Experi-
ments have shown, however, that syntactic methods are not significantly more effective
than statistical methods (Fagan, 1987; Mitra et al., 1997; Kraaij and Pohlmann, 1998).
This failure of NLP to outperform statistics can be attributed to the poor quality and
robustness of the existing NLP techniques. Nevertheless, we will adopt a syntactic ap-
proach for the time being, assuming that accurate syntactic analysis and disambiguation
techniques will become available. We will return to the effectiveness issues of NLP in
Section 6.7.

Evidence suggests that noun phrases should be considered as a semantic unit. The
most important reasons are

• noun phrases play a central role in the syntactic description of all natural languages,
functioning as subject and object, and in preposition phrases.

• In artificial intelligence, noun phrases are considered as references to (or descriptions
of) complicated concepts (Winograd, 1983). By others, as picture producers.

1Most approaches to statistical phrases do use word-order but they do not account for syntax; they
either use a standard word-order (e.g. alphabetical) or the word-order as it is found in text.
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Noun phrases might be good approximations of concepts, but other phrases also corre-
sponding to concepts are missed. This observation points to the necessity to consider
other phrases as well (e.g., verb phrases). The verb phrase describes a situation or process
by relating a main verb to a number of noun phrases and other phrases. The linguistically
meaningful phrases that may be considered as retrieval terms are therefore at least the
noun phrase including its modifiers, and the verb phrase including its subject, object,
and other complements. An abstract representation of these phrases suitable for indexing
is needed, and will be defined in Section 6.4.

Phrases can be used in their literal form as terms, although the performance is then
expected to be inferior to that of keywords. It is well known that as the size of a corpus
grows, the number of keywords grows with the square root of the size of the corpus. One
could expect that the same holds for phrases, but the number of such enriched terms
grows even faster, as does the likelihood of there being different phrases corresponding to
the same concept. On the one hand, we would like to use phrases to achieve precision, but
on the other hand, recall will be too low because the probability of a phrase reoccurring
literally is too low. To deal with this sparsity of phrasal terms, we shall introduce a
number of linguistic normalizations (Section 6.5). Linguistic normalization tries to reduce
alternative formulations of meaning to a normalized form. For example, river pollution
and pollution of rivers are both normalized to the same indexing term pollution+river.

6.4 Representation of Phrases

A syntactic phrase can be represented in various ways. At the bottom end of the repre-
sentation spectrum, a phrase can be represented simply by the unordered set of its words,
disregarding all structure. At the other end, all linguistic structure can be taken into
account, resulting in complicated parse-tree representations. The choice is a trade-off
between syntactic information and the ease of phrase extraction.

For example, a simple noun phrase picker could easily be constructed by looking for
sequences of articles, adjectives, and nouns within a text. A noun phrase extracted like
that would contain little information about how its adjectives and nouns are related to
each other, except that adjacent words are most probably more related than nonadjacent
ones. In an unordered set-of-words representation, and assuming there is no special
treatment of proper names, the noun phrase

the hillary clinton health care bill proposal

would contain bill clinton, but it is obvious that this phrase does not refer to him.
However, experimentally such a co-occurrence of query keywords within a noun phrase
has resulted in clear improvements in precision (Arampatzis et al., 1997a). A sequence-of-
words representation does not contain bill clinton (rightly), but does not contain clinton
proposal either (wrongly). A full linguistic parsing would result in a much more precise
representation. The parse-tree would contain too much linguistic detail, however, most of
which is unnecessary for indexing, as such details reflect mostly the syntactic description
of the natural language used rather than the intended meaning. Since the goal is to
derive adequately precise (for retrieval purposes) meaning from syntax, we will settle for
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less than full linguistic parsing. Linguistically motivated light parsing has already been
shown to slightly improve retrieval results over the classic IR approximation to noun
phrase recognition (Hull et al., 1996).

As a result, an intermediate representation of noun and verb phrases is desirable,
eliminating structures that can be assumed not to be beneficial to IR:

Definition 3 (noun phrase for IR) A core noun phrase NP, from an IR point of view,
has the general form:

NP = det∗pre∗head post∗ ,

where

• det (determiner) = article, quantor, number, etc.

• pre (premodifier) = adjective, noun, or coordinated phrase.

• head = usually a noun.

• post (postmodifier) = prepositional phrase, relative clause, etc.

• the asterisk (∗) denotes a list of zero or more elements.

Pre- and postmodifiers may recursively include other NPs.

Definition 4 (verb phrase for IR) A verb phrase VP, from an IR point of view, has
the general form2:

VP = subj kernel comp∗ ,

where

• subj (subject) = an NP (in the wide sense, including personal names and personal
pronouns).

• kernel (verbal clause) = inflected form of some verb, possibly composed with other
auxiliary verbforms and adverbs.

• comp (complements, such as object, indirect object, or preposition complement) =
an NP or prepositional phrase (PP).

• the asterisk (∗) denotes a list of zero or more elements, depending on the transitivity
of the verb (e.g., intransitive verbs have no complements, transitive verbs have an
object, ditransitive have an object and indirect object).

2This definition of verb phrase is non-standard, but the difference is not really important for IR.
What we are talking about here is rather a (verbal) clause, i.e. a verb phrase (according to its standard
linguistic definition) including its subject, object(s) and other complements.
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In accordance with the above definitions, it is possible to perform a parsing arguably
lighter than full linguistic parsing, while a reasonable amount of structural information
will still be retained. An example parse-tree is given in Figure 6.1. This is rather compact
in comparison with a full linguistic parsetree, which would easily have overrun this page
for the same sentence. Of course it is important that the parser is able to deduce the
correct (or at least the most probable) dependency structure in complicated phrases. As
we will see next, some elements that are considered of little interest from an IR point of
view (e.g., determiners, prepositions, auxiliaries, and adverbs), may be eliminated.

auxiliaries
and adverbs

det det

PP

headpre

NPprep

The  students    will probably be   attending   a  special  lecture  on  software  engineering   on Monday

kernel

VP

pre headhead

head

NPprep

PP

comp

post

comp

NPverbNP

subj

Figure 6.1: Light parsing for IR purposes.

6.5 Linguistic Normalization

The goal of normalization is to map different but semantically equivalent phrases onto
one canonical representative phrase, the phrase frame (Figure 6.2). We distinguish be-
tween three types of normalization: the morphological, syntactic, and lexicosemantic
normalization.

Normalization

all phrases
phrase frame 1

phrase frame 2

phrase frame 3

Figure 6.2: linguistic normalization
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6.5.1 Morphological Normalization

Morphological normalization has traditionally been performed by means of stemming.
Nonlinguistic stemming, especially when it operates in the absence of any lexicon at
all, is rather aggressive and may result in improper conflations. For instance, a Porter-
like stemmer without a lexicon will reduce both university and universe to univers ,
and organization to organ. Errors such as these are translated into a loss in retrieval
precision. This impact is greater for more inflected languages than English because of the
increased number of introduced ambiguities. Such improper conflations can be avoided
by simply checking for the existence of the wordform in a lexicon after each reduction
step. Nevertheless, the verb form suited will still be reduced wrongly to the noun suite.

Taking into account the linguistic context, a more conservative approach will pre-
vent many of these errors. Conflations can be restricted to retain the part of speech
of a word. In this respect, morphological normalization may be performed by means of
lemmatization:

• Verb forms are reduced to the infinitive.

• Inflected forms of nouns are reduced to the nominative singular.

• Comparatives and superlatives of gradable adjectives are reduced to the absolute
form.

For this task, the grammatical rules for forming, for example, past participles or noun
plurals, should be applied in reverse. Furthermore, the utilization of exception lists in
order to handle irregularities such as wolf–wolves , bad–worse–worst , and see–saw–seen is
indispensable.

Lemmatization is relatively simple and handles mostly inflectional morphology. It is
similar to the lexicon-based word normalization, as referred to in (Strzalkowski et al.,
1999). It must be noted that there are cases in which lemmatization reduces noun and
verb forms to the same lemma. Consider, for instance, the verb form attacked and the
plural noun attacks ; both will be lemmatized as attack . Although such conflations seem
beneficial, there are empirical indications that the confusion between nouns and verbs
when these are lemmatized, may slightly hurt effectiveness (Arampatzis et al., 2000d).

Derivational morphology involves semantics and cross part-of-speech word relations,
and hence should be approached carefully. Certain derivational transformations may be
suggested by syntax. For instance, verbs may be turned into nouns (nominalization) or
the other way around, as will be shown in the next section. The remaining derivational
morphology should be treated where possible by lexicosemantic normalization.
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6.5.2 Syntactic Normalization

According to the linguistic principle of headedness , any phrase has a single head. This
head is usually a noun (the last noun before the postmodifiers) in NP, and the main verb
in the case of VP3. The rest of the phrase consists of modifiers. Consequently, every
phrase can be mapped onto a phrase frame

PF = [h,m] .

The head h gives the central concept of the phrase and the list m of modifiers serves to
make it more precise. Conversely, the head may be used as an abstraction of the phrase,
losing precision but gaining recall. It should be noted that although the head–modifier
relation implies semantic dependence, what we have here is purely a syntactic relation.
The intention is to produce meaningful indexing terms without deep semantic analysis,
therefore the precise semantic interpretation of any head–modifier relation is forborne,
treating it simply as an ordered relation.

Heads and modifiers in the form of phrases are recursively defined as phrase frames:
[[h1,m1], [h2,m2]]. The modifier part may be empty in the case of a bare head. This
case is denoted equivalently by [h, ] or [h]. The head may serve as an index for a list of
phrases with occurrence frequencies

[ engineering 1026 ,
of software 7 ;
reverse 102 ;
software 842 ;
... ]

where the frequency of a bare head includes that of its modified occurrences. Alternative
modifications of the head are separated by semicolons.

Phrases frames are produced by normalizing the phrase representations of Defini-
tions 3 and 4. In noun phrases, determiners are of little interest for IR, thus they may
be eliminated. The normalization of noun phrase is defined as

Definition 5 (noun phrase normalization)

NP = det∗pre∗head post∗ 4→ [head, pre∗post∗] .

The elements of the list pre∗post∗ are considered to modify the head independently of
each other, and they are separated by semicolons, hence any PF containing a list, e.g.,
[h,m] = [h,m1; m2], may be expanded as [h,m1]; [h,m2]. The noun phrase normalization
can be applied recursively on heads and modifiers that include other NPs. For example

a special lecture on software engineering
4→ [lecture, special; on software engineering]
4→ [lecture, special; on [engineering,software]].

3According to the standard definition of VP, the main verb is its head. As we will see later, the head
of the (verbal) clause of Definition 4 is its subject.
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Note that an alternative notation which would have eliminated the list of modifiers is

[[lecture, special], on [engineering, software]].

However, such a notation rather implies that special is a more important modifier than
[engineering, software], but we prefer not to see it like this.

Prepositions (e.g., on in the last example) may optionally be kept for further semantic
analysis, although their use is usually dropped for simplicity. It must be noted, however,
that the spaceman on the ship enjoys a different view than the spaceman outside the ship
and the spaceman without ship is probably not even in space. The impact of prepositions
on retrieval performance is not well established, but their careful treatment may be
beneficial. Their use and meaning can always be postponed until the matching of PFs.
Prepositions, conjuctions and other such lexical items were considered as connectors in
the characterization language of index expressions (Bruza and Weide, 1992).

The noun phrase presents only limited opportunities for syntactic normalization. For
the verb phrase, more normalizations can be found that preserve its meaning (or rather
do not lose information obviously relevant for retrieval purposes). To begin with the
kernel, the elimination of time, modality, and voice seems reasonable. The obviously
meaningful head–modifier combinations are [subj, verb] and [verb, comp∗].

Definition 6 (verb phrase normalization I)

VP = subj kernel comp∗ 4→ [subj, verb(kernel)]; [verb(kernel), comp∗] .

where verb(.) picks up the main verb of a kernel.

For example

the students will probably attend a special lecture on Monday
4→ [the students, attend]; [attend, a special lecture; on Monday].

In Definition 6 the adverbs of the kernel are eliminated. Small experiments have suggested
that adverbs have a little indexing value (Arampatzis et al., 2000d). They might be more
useful, however, if they combine with the verbs (or adjectives in the case of noun phrase)
they modify; for example, [attend, probably]. The indexing value of such verb–adverb
and adjective–adverb pairs has to be evaluated empirically.

The possibility exists to map verbs to nouns (nominalization) or vice versa (verbaliza-
tion). Such normalization allows the matching of PFs derived from different sources (verb
phrases or noun phrases). For example, (to) implement can be nominalized to imple-
mentation. Since the opposite transformation is also possible for nominalized verb forms,
the choice has to be made on the basis of experimentation. We will presently choose to
turn everything into “pictures” (noun phrases) by applying the former alternative. This
results in a more drastic (and compact) normalization:

Definition 7 (Verb Phrase Normalization II)

VP = subj kernel comp∗ 4→ [nom(verb(kernel)), subj comp∗] .

where verb(.) picks up the main verb from a kernel, and the function nom() nominalizes
verbs.
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For example

the students will probably attend a special lecture on Monday
4→ [attendance, the students; a special lecture; on Monday].

Similarily, adverbs may be mapped onto adjectives to modify the nominalized verbs; for
example, [attendance, probable]. Cross part-of-speech transformations such as those
controlled by syntax can deal to some extent with derivational morphology, compensating
for the conservative nature of lemmatization described in the previous section. The
further application of the noun phrase normalization to the last phrase frame eventually
results in

[attendance, student; [lecture, special]; on [Monday]].

All these normalizations are rather language-dependent, and the final decision of
what has to be included in the phrase frames should be left to the linguists and system
designers; we have merely suggested a few obvious ones.

6.5.3 Lexicosemantic Normalization

This kind of normalization depends on the observation that certain relations can be found
between the meaning of individual words. The most well known of those lexicosemantic
relations are

• synonymy and antonymy ,

• hyponymy and hypernymy (the is-a relation),

• meronymy and holonymy (the part-of relation).

Two important aspects that should be taken into account for this kind of normalization
are polysemy and collocations.

A word is polysemous if its meaning depends on the context. For example, by itself
the noun note can be meant as a being a short letter, or as a musical note; consequently
its context has to clarify its meaning. The intended meaning determines the words that
are lexicosemantically related to the initial word. Using the synonymy relation for the
first meaning we can obtain brief , while tune is obtained in the second case. This suggests
that the conceptual context of a word should be taken into account.

Collocations are two or more words that often co-occur adjacent to one another (e.g.,
health care) having in this combination a certain meaning. When using WordNet in
expanding a query with hypernyms, the notion health care obtains social insurance, which
cannot be obtained in any case by expanding the two separate words. This observation
suggests that collocations should be considered as single units.

Assuming that the word sense ambiguity originating from polysemy is resolved, three
possibilities can been seen for lexicosemantic normalization.

1. semantic clustering in analogy with stemming. For instance, several synonyms
in a context are reduced to one word cluster. The word cluster may be represented
by the most frequent of the synonyms.
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2. semantic expansion, expanding a term with all its -nyms. The derived terms
may be weighted according to their relation with the initial term.

3. incorporation of a semantic similarity function into the retrieval function
(fuzzy matching). Based on a semantic taxonomy , an ontology , or a semantic
network we can define a semantic similarity function for words.

Semantic clustering is rather aggressive and suffers from the same drawbacks as stem-
ming. For example, two “synonyms” are often merely overlapping in meaning and they
do not actually mean the same thing. The choice to call them synonyms depends on the
degree of overlap. One of the questions is how extended these clusters should be; that is,
what maximum semantic distance is allowed for two words in order for them to belong
to the same cluster. Again, usability and discrimination come to play an important role
here. Clusters that are too large will be assigned as indexing terms to too many doc-
uments and therefore are not discriminating. Clusters that are too small (e.g., one or
two synonyms) will not have a great impact in performance compared to conventional
indexing; thus they are not usable. Experimentation should provide a usably discrimi-
nating cluster size. Semantic expansion can partly overcome the cluster size problem by
supplying many related terms weighted inversely proportional to their semantic distance
from the original term. Expansion can easily result in an explosion of indexing or query
terms, however. The possibility of fuzzy matching seems elegant and exciting, although
it is far more computationally expensive than the others.

Working out fuzzy matching a bit more, using only the relations SYNonymy, HYPONnymy,
and HYPERnymy between two words x and y, one could define

sim(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 x = y
0.9 x ∈ SYN(y)
0.7n x ∈ HYPONn(y)
0.5n x ∈ HYPERn(y)
0 otherwise

(6.1)

where a ∈ HYPERn(b) means that a can be found by walking in the graph of hypernyms
of b a number of n steps; a ∈ HYPONn(b) is similarly defined. SYN is a symmetric
relation, meaning that if x ∈ SYN(y) then y ∈ SYN(x), so it is sufficient to check only if
one of the two holds. It should be noted that sim assumes an order in its arguments, x
is a word from a document, and y is from a query. Moreover, hypernyms of query terms
are matched with lower weights than hyponyms to reflect the assumption that a user’s
query salmon should not retrieve many documents about fish in general, but fish should
retrieve documents about salmon.

As an example of fuzzy matching, consider the sentence

the students will probably attend a conference on software engineering,

from which, after syntactic and morphological normalization and the elimination of some
(assumed) redundant elements, the following phrase frame may be constructed:

[attendance, student; conference; [engineering, software]].
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Now let us consider another sentence

the pupils are listening carefully to the tutorial about software engineering,

which in a phrase frame representation becomes

[listening, pupil; tutorial; [engineering, software]].

Note that listening here represents the nominalized form (the listening) of the verb to
listen rather than its progressive form. Using WordNet’s lexical graph, and assuming
that the latter sentence is part of a natural language description of a user’s information
need (query), the following relations hold

student = SYN(pupil) ⇒ sim(student, pupil) = 0.9 ,

conference = HYPER2(tutorial) ⇒ sim(tutorial, conference) = 0.52 .

The nouns listening and attendance may be matched through the relation that holds
between their corresponding verbs.

attend = HYPON1(listen) ⇒ sim(attend, listen) = 0.7 .

Using these relations, it is now easy to match the two sentences. However, this example
is conveniently selected as it results in phrase frames with similar structures. In general,
this is not the case, suggesting that such a lexicosemantic similarity function should be
a part of a larger structural matching technique.

6.6 Weighting and Matching

Term weighting is a crucial part of any IR system. Statistical weighting schemes such as
tf.idf , which perform well for single terms, do not seem to extend on multiword terms.
Most work on the use of multiword indexing terms in IR has concentrated on represen-
tation and matching strategies. Little consideration was given to phrase weighting and
to scoring of documents matched. An obvious weighting strategy for phrasal terms is to
weight a term as a function of the weights of its components. However, such strategies
have not produced uniform results (Fagan, 1987; Lewis and Croft, 1990). We suggest a
simple weighting scheme suitable for phrase frames that takes into account the modifi-
cation structure and its depth.

Phrase frames may contain nested phrase frames (subframes) at different depths. To
simplify the structural matching of complicated phrase frames, the strategy of unnesting
(Koster et al., 1999) can be followed. The unnesting of a phrase frame produces all
possible subframes down to single-term frames. This can be understood more easily by
visualizing a phrase frame as a tree; the root node is the main head, and every node is
modified by its child nodes. Such an abstract tree is depicted in Figure 6.3. Unnesting
produces all possible triangles q of all possible sizes and depths. The main head of a
frame carries the most semantic information of all the other elements in the frame. The
other elements modify the head, increasing the amount of semantic information carried
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p

q

k

Figure 6.3: Tree visualization of a phrase frame p with a subframe q at depth k.

by the frame. The amount of information added to the frame by an element decreases
with the depth of the element within the frame4.

First we introduce the predicate sub(p, q, k) as a shorthand for the expression: phrase
frame p has phrase frame q as a subframe at depth k. The depth weight dw of subframe
q obtained from frame p can be expressed as

dw(q, p) =
∑

k:sub(p,q,k)

f(k) , (6.2)

where f is some decreasing function, e.g. f(k) = 1
1+k . The sum accounts for more than

one occurrence of subframe q within p (rather rare because stylistic considerations for
natural language do not favor repetitions of the same subphrase within a NP or VP). Let
document d have the set C(d) of phrase frames as characterization, augmented with all
the unnested terms down to single terms. Then the frame frequency of q within document
d can be described as

ff(q, d) =
∑

p∈C(d)

dw(q, p) . (6.3)

The geometrical length of the document frame vector in the frame space is

l(d) =

√ ∑

q∈C(d)

ff(q, d)2 . (6.4)

The weight of frame q within document d is estimated by

w(q, d) =
ff(q, d)

l(d)
. (6.5)

The similarity between document d and query q then can be estimated by the dot
product formula

S(d, q) =
∑

r∈C(d)∩C(q)

w(r, d) ∗ w(r, q) . (6.6)

4This is rather a questionable assumption. One can find examples where the information added to
the frame decreases with the depth of the element, while other examples may support that such a use of
an element’s depth may be misleading. Whether or not taking the depth into account is beneficial for
retrieval effectiveness should rather be determined experimentally.
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Using the last formula, the documents of a collection can be ranked in a response to
a query. Of course, Equation 6.6 may be modified to incorporate some form of IDF.
Without an empirical evaluation of this scheme, however, not much more can be said.

6.7 An Architecture of an LMI System

In this section, we discuss how a retrieval system based on the linguistically motivated in-
dexing (LMI) model described in this chapter can be implemented. Until now we assumed
that an immaculate linguistic analysis is available, disregarding technical implementation
details. However, trying to put such a retrieval system into practice, the inefficiencies and
ineffectiveness of currently available NLP techniques become apparent. A major source
of ineffectiveness is linguistic ambiguity , some of which can be resolved, while the rest
requires sophisticated semantic analysis. Furthermore, NLP can be so time-consuming
that it becomes impractical for real-world applications. Lacking deep semantic analy-
sis, some design decisions have to be made in order to make a linguistically motivated
retrieval system usable in the real world.

Given a collection of text documents, the indexing task assigns to each document a
characterization in the form of (weighted) phrase frames. Phrase frames are derived from
documents through a sequence of processing steps.

1. Tokenization.

2. Part-of-speech tagging.

3. Morphological normalization.

4. Collocation identification.

5. Lexicosemantic normalization.

6. Syntactic analysis.

7. Syntactic normalization.

8. Weighting.

The tokenization step constitutes the detection of sentence boundaries followed by the
division of sentences into words. This may sufficiently be implemented based on capital-
ization rules, spacing, tabbing, and document layout considerations.

Part-of-speech tagging assigns a part-of-speech label to each word in a text, depending
on the labels assigned to the words around it. It is possible that more than one label
can be assigned to a word, suggesting some kind of lexical ambiguity in the input. A
simple way to overcome this ambiguity is to retain only the most probable label for an
ambiguous word, based on the occurrence frequencies of the word under all its possible
parts of speech. Another solution would be to postpone lexical ambiguity resolution
until syntactic analysis. Syntactic rules are able to resolve some lexical ambiguity, but
not all. Taking collocations as single units may also resolve some lexical ambiguity. For



104 Ch. 6 – Linguistically Motivated Indexing

example, while social can be either an adjective or a noun, social security taken as a
single unit is a noun collocation because it functions as a noun. After part-of-speech
tagging, morphological normalization is performed, guided by the assigned labels.

Static collocation lists or word co-occurrence statistics can be used to identify collo-
cations. Identified collocations are treated as single units in subsequent processing steps.
Lexicosemantic normalization is the following step, assuming that it is implemented by
semantic clustering or expansion. If it is implemented as a semantic similarity function,
then it is performed during the matching of documents to queries rather than during
indexing.

Syntactic analysis or parsing reveals syntactic relations between words, collocations,
and phrases in a sentence. Syntactic relations are identified based on syntactic rules
(grammar). Given the part-of-speech information for a text, syntactic rules can be for-
mulated for sequences of part-of-speech labels; for example, the combination adjective–
noun surrounded by other part-of-speech labels is a noun phrase. Structural ambiguity
— what modifies what — may occur during analysis. For instance, every noun phrase
with three or more words, two or more of which are nouns, is a potential source of struc-
tural ambiguity. To disambiguate such structures, statistical methods can be applied.
In the case of noun phrases, first, frequency information is collected from the corpus for
all two-word noun phrases. Then all three-word noun phrases are disambiguated by as-
signing to them the most probable structure based on the frequencies of two-word noun
phrases. Gradually this can be applied up to n-word noun phrases based on the frequen-
cies of all previously disambiguated k-word noun phrases (k < n). Left-dependence may
be assigned where not enough frequency information is available, since it is the most
probable modification structure in the English noun phrase. A similar statistical ap-
proach can be developed to resolve the prepositional phrase attachment problem, guided
by subcategorization information about nouns and verbs.

The next step, syntactic normalization, may be incorporated in the parser in a way
that the parser outputs regularized parse tree representations (e.g., phrase frames). As
soon as the collection of documents is translated into a phrase frame representation,
phrase frames can be weighted according to their frequency characteristics and structure.

A similar procedure to the above indexing steps can be followed to turn a natural
language query into a phrase frame representation, allowing the matching of queries to
documents. The indexing procedure just described can replace the indexing part of a
conventional retrieval system architecture. There is no obvious need why radical archi-
tectural changes should be made. Inverted files, vector space, and probabilistic retrieval
models are still suitable and may be adapted to work with linguistically-motivated in-
dexing terms. What really changes is the way that indexing terms are extracted from
documents and how these are matched. The current inefficiencies and ineffectiveness of
NLP techniques can be treated for the time being by such statistical solutions as the
(crude) ones described above. Fortunately, the explosion in computational power that
becomes available daily, combined with the efforts put into NLP issues from the (compu-
tational) linguists’ side, suggests that the use of linguistically motivated retrieval systems
in everyday practice is merely a matter of time.
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6.8 Summary

The bag-of-words paradigm has dominated commercially available information retrieval
systems for about three decades. The main reasons for the endurance of such systems
based on such simple assumptions as the naive keyword retrieval hypothesis are first, that
they are relatively easy and simple to implement (it takes a third-year computer science
student with the knowledge of a programming language, an IR textbook, and some days’
time), and second and most important, that these systems have presented until recently
a satisfactory effectiveness in searching collections in the class of megabytes.

The digital and networking revolution has made available data in the class of gi-
gabytes, exposing the inadequate nature of keyword-based systems. The searching for
information has become a laborious task for a user who presently has to perform her or
his own selection over the “dirty” and very lengthy output of a World Wide Web search
engine, for example. As a consequence, many researchers have aimed at higher levels of
natural language utilization in IR, assuming that better “understanding” of the infor-
mation need as well as the information residing in a database is the key for improving
retrieval effectiveness.

The attempts made to break out of the bag-of-words paradigm by employing NLP
and other linguistic resources have until now presented inconsistent or at least dubious
results, however. One explanation of why NLP has not had more successes in IR is that
it does not go far enough. First, the currently available NLP techniques suffer from lack
of accuracy and efficiency, and second, there are doubts if syntactic structure is a good
substitute for semantic content. The evidence so far suggests further investigation and
better modeling.

In this chapter, we have reviewed some of the most important research in the field, and
discussed a general model for a linguistically motivated retrieval system. We believe that
a retrieval schema based on the phrase retrieval hypothesis and incorporating linguistic
normalization has more potential in improving retrieval effectiveness than keyword-based
schemas. We have suggested a suitable model and some techniques, however, whether or
not the discussed techniques work is still not entirely clear. We will present our empirical
evaluation of some parts of the model in Chapter 7.

Considering that better IR means more user satisfaction, perhaps a more radical
change in the focus of IR is needed. Maybe the future of IR is not to provide better
ranking of retrieved documents but to supply the very information a user is seeking. A
compact summary of retrieval results or a brief answer might be more usable for an aver-
age user than a ranked list of hundreds of documents. Automatic summarization, question
answering, and information extraction systems require advanced NLP techniques, how-
ever. Furthermore, the traditional precision- and recall-based retrieval quality metrics
may not be able to evaluate the ability of a system to derive such information; conse-
quently other metrics will have to be developed. Nevertheless, one thing seems certain
for the future: NLP and other linguistic resources will become — if they are not already
becoming — indispensable parts of every effective IR system.



106 Ch. 6 – Linguistically Motivated Indexing



Chapter 7

An Evaluation of LMI Schemes

This chapter describes our experimental work in using linguistically motivated indexing
(LMI) schemes for information seeking tasks. It is based on our previously published
work in (Arampatzis et al., 1997a) and (Arampatzis et al., 2000d).

We describe two experiments. The first is a small retrieval experiment which was
performed with the Irena system in 1995. Its results led us to the development of the
linguistically-motivated indexing model which we introduced in Chapter 6. The second
experiment sets out to evaluate a part of this model in a document classification context.
We will see the implications that both experiments have for text filtering environments.

7.1 The Irena System

The experimental Irena (Information Retrieval Engine based on Natural language Anal-
ysis) system was developed in 1995 in order to study the impact of natural language pro-
cessing (NLP) techniques on the precision and recall of document retrieval systems. The
NLP component deals with the morphological and lexicosemantical part of the English
language to improve recall, and with syntax to improve precision.

Irena accepts queries in the form of noun phrases. For the syntactical analysis of
queries, the power of the Agfl1 formalism was explored in describing and developing a
syntactical analyzer for the English noun phrase. The parser syntactically analyzes NP
queries to extract only adjectives and nouns, or any other words which function as such,
e.g., proper names, gerunds, or adjectival present and past participles.

Morphology and lexicosemantics are dealt with by query expansion. Keywords can be
lexicosemantically expanded with synonyms. Moreover, keywords can also be expanded
with morphological variants of them, for instance, plurals for nouns or comparative and
superlative forms for adjectives.

The system was tested on a small corpus of manually collected documents about pop
music. The retrieval strategy was based either on noun phrases or on proximity consider-
ations. Next, we will briefly describe how lexicosemantical and morphological expansion
was performed, and the approach we followed in using noun phrases. We will report the
results of a small experiment, and reinterpret these in the contexts of the linguistically

1Affix Grammars over Finite Lattices; see http://www.cs.kun.nl/agfl/
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motivated indexing model of Chapter 6 and relevance feedback environments such as
filtering. We will not expand on how syntactic analysis was performed; the interested
reader should refer to (Arampatzis et al., 1997a) or (Arampatzis and Tsoris, 1996).

7.1.1 Lexicosemantic Query Expansion

Synonyms of the keywords are obtained from WordNet (Miller, 1995). In WordNet,
nouns, verbs, adjectives and adverbs are organized into synonym sets (synsets), i.e., lists
of synonymous wordforms that are interchangeable in some context.

If we disregard word meaning and combine all synsets that a keyword belongs to,
each keyword of the query “popular bands” will be expanded as follows:

popular, demotic, lay, plain, nontechnical, unspecialized, untechnical,
pop.

band, set, circle, lot, stria, striation, banding, stripe, dance
band, dance orchestra, frequency band, ring.

Words like “demotic” and “stria” are not synonyms of “popular” and “band” in music
contexts. To avoid such erroneous expansions, Irena presents every candidate synset to
the user, asking for a confirmation of its relevance before using it for expansion. As a
result, for the keyword “band” of the query considered, a user should reject the synsets

{ band, stria, striation }
(a stripe of contrasting color;
‘‘chromosomes exhibit characteristic bands’’)

{ band, frequency band }
(band of radio frequencies for e.g. transmitting a TV signal)

and select only the following:

{ dance band, band, dance orchestra }
(a group of musicians playing popular music for dancing)

In this way, the ideal expansion of the query has as follows:

popular, pop.

band, dance band, dance orchestra.
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7.1.2 Morphological Query Expansion

The system supports (inflectional only) morphological expansion of keywords. Expansion
can be applied only to nouns and gradable adjectives. Adjectival participles and gerunds
are not expanded at all, due to the fact that adjectival participles are not inflected and
gerunds have no plural.

The expander is capable of conflating, following the English grammar rules (Alexan-
der, 1988), the singular or plural forms (depending on which form is missing from the
query) of nouns, and the nominative, comparative, or superlative forms of gradable ad-
jectives. A lists of nouns with irregular plurals, and a list of gradable adjectives are used
for these purposes.

All common nouns in English fall into one of two sub-classes: they may be either
countable or uncountable and that distinction is fundamental for the existence of the
plural. Unfortunately, strict classifications of nouns are in many cases unreliable, as
some nouns which are normally uncountable can be used as countable in certain contexts.
For instance, the noun “weather” is normally uncountable, but one can say “I go out
all weathers”. The distinction of nouns in countable and uncountable is not taken into
consideration, so some nouns may be expanded into non-existent plural forms.

7.1.3 The Noun Phrase as a Unit of Co-occurrence

An ideal retrieval strategy based on noun phrases would require some measure of the
“nearness” of one noun phrase (in the query) to another (in the document). Although
similar measures have been developed, e.g., logical nearness in (Bruza, 1993; Bruza and
IJdens, 1994), we investigated in Irena other more heuristic strategies, namely, the noun
phrase co-occurrence hypothesis.

Our basic premise was that words occurring in the same noun phrase share some
semantical relation. If two or more nouns or adjectives co-occurred in a single noun
phrase, then we assumed that they share some relatedness, even without knowing what
they stand for. For example in the phrase

. . . tracks were recorded at the BBC studios for later radio programs.

the nouns “radio”, “programs” and the proper name “BBC” which reside in the same
(underlined) NP2 are semantically related. If a retrieval strategy requires all keywords
of the query “radio programs on BBC” to co-occur in the same NP, then the above
document will be retrieved, while the following two will not:

Document 1: The transmission of his first radio programs resembled
the early years of the creation of BBC empire which . . .

Document 2: Ten musicians from the BBC Symphony Orchestra were inter-
viewed in several radio programs of L.A. stations . . .

2Syntactically, the prepositional phrase (PP) “for later radio programs” belongs to the verb phrase
in this example. The problem here is that a simple-minded parser cannot resolve this PP-attachment.
We used an NP-parser only, which was not able to parse verb phrases. In this respect, we went for the
longest possible NP resolving structural ambiguity by means of syntactic under-specification.
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In both of the documents above, the three words of the query do not all reside in the
same NP. These real-world documents clearly show that extra linguistic processing is
superior compared to a proximity search that requires words of the user’s query to be
just close to each other in a document.

Of course, there are exceptions which do not conform to the NP co-occurrence hy-
pothesis. As an example, let us consider the following query and document:

Query: soundtracks of films

Document: In this album, there is a good background, but there is something
missing. Either a solo voice or instrument. Or at least a film. Soundtrack
without pictures so to speak.

The noun “picture” is a synonym of the noun “film” and belongs to the same NP as
“soundtrack”. The meaning of the last sentence is merely that this album could be a
soundtrack of a movie, but it was actually not. Note that prepositions (e.g., “of’ or
“without”) are not considered at all by the NP co-occurrence hypothesis.

7.1.4 An Experiment

We conducted a small experiment using a manually collected corpus of documents about
pop music (e.g. magazine articles, FAQs about artists, interviews, reviews, etc.). Some
corpus statistics are shown in Table 7.1.

Number of documents 633
Mean words per document 1695

Number of words in collection 1,072,762
Total size 6,752 Kb

Table 7.1: Statistics of the corpus used in the Irena experiment.

Two computer science students formulated 44 NP queries in total. The queries were
parsed and an average of 2.6 keywords per query were extracted. The expansion with
synonyms resulted in 4.1 additional search terms, that is about 1.6 synonyms per initial
keyword. The morphological expansion of all keywords and their synonyms added an
average of 14.2 search terms. Consequently, the fully expanded queries were 20.9 terms
on average.

All search terms were unweighted; the searches were boolean. Three different kinds
of searches were compared:

K: all initial keywords ANDed.

KM: each initial keyword was ORed with all its morphological variants. Then, all
batches of ORed search terms were ANDed.

KSM: each initial keyword was ORed with all its synonyms and all their morphological
variants. Then, all batches of ORed search terms were ANDed.
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The retrieved sets were restricted to the documents in which the above search types were
satisfied within some text window. Therefore, the rankings were created by varying the
text window: documents which satisfied the search within an NP were ranked at the top,
followed by the documents with term co-occurrence within 2 text lines, then 3 text lines,
and so on. Test runs showed that using this kind of ranking, precision decreased and
recall increased by going down rank positions.

The precision–recall results are summarized in Table 7.2. The retrieval results per
query were judged for relevance by the user who submitted the query. We were confronted
with the classic problem of calculating recall, so we report the relative recall instead: the
configuration which retrieved the most relevant documents for a query was assumed to
had achieved 100% recall. Precision and recall were macro-averaged across all queries.

K KM KSM
Window Prec. % R-Recall % Prec. % R-Recall % Prec. % R-Recall %

NP 100.00 6.31 95.65 23.14 91.38 27.90
2 79.17 19.98 76.45 49.44 71.61 58.41
3 74.60 24.75 70.62 58.41 66.33 69.43
4 72.97 28.40 68.05 66.83 63.40 78.40
6 70.21 34.71 65.22 76.79 59.59 91.58
8 69.44 39.48 63.87 84.22 56.38 100.00

Table 7.2: Precision-Recall results.

The NP co-occurrence requirement resulted in high precision levels, above 90% for all
search types. However, the recall was extremely low compared to simple co-occurrence
in a text window. As the window size increases from 2 to 8 lines, recall is gained at the
price of a drop in precision. It is found, however, that by increasing the window size
to more than 16 lines, precision is dramatically lowered to 25-35%. Upon enlarging the
window, keywords may appear in different paragraphs with possibly different subjects.
A window size of 4 to 8 lines gives reasonable levels of precision and recall.

Expanding queries with synonyms and morphological variants led to a marked increase
in recall. The drop in precision can be considered as insubstantial compared to the recall
gained.

7.1.5 Discussion

With current standards, the Irena experiment is an exercise rather than a full-scale
experiment. The collection was small, but the techniques applied — e.g. natural lan-
guage parsing, query expansion with synonyms, (manual) word-sense disambiguation —
are still not so common in everyday information retrieval engines. Irena has been a
demonstration of the feasibility of the techniques.

The small-scale experiment has demonstrated that lexical and morphological expan-
sion (normalization) of queries is indispensable for high recall and results in an insub-
stantial average loss of precision, hence, it is highly recommended. The NP co-occurrence
criterion seems to be successful in determining whether keywords are semantically related,
and achieves a much better precision than proximity search. The low recall obtained sug-
gests the generalization of the NP co-occurrence hypothesis to wider classes of phrases
to delimit the semantic relatedness between words, e.g. verb phrases.
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The low recall achieved could be interpreted in two different ways. One could argue
that use of the noun phrase shows no promise in improving the performance of IR systems
(Smeaton, 1997; Gay and Croft, 1990). We argue, on the other hand, that we should
retain the noun phrase as a unit of co-occurrence, but should investigate the possibilities
of enhancing the recall without losing too much precision, by taking into account linguistic
variation and anaphora.

What are the implications of the experiment for relevance feedback environments?
Let us consider an adaptive filtering task. A user issues a short query, and there is no
other relevance information. An adaptive system counts on user relevance judgments for
documents retrieved, so as to adapt the filtering model and improve the query. However,
explicit user feedback is not guaranteed in a real-world system, so the system should
be able to infer relevance from other factors, such as the time the user has spent in
reading a document. The NP co-occurrence criterion can provide an additional means for
inference. If co-occurrence of the search-words in the same noun phrase is strong evidence
for relevance, then explicit user feedback becomes less important for those documents.
In other words, we suggest a rule-based pseudo-relevance (blind) feedback: if some kind
of NP co-occurrence holds in a retrieved document, then use the document as a relevant
training example.

7.2 An Evaluation of some LMI Schemes

In this section, we describe an experiment which was performed in the context of val-
idating the LMI scheme described in Chapter 6. The approach taken is based on a
part-of-speech (POS) tagger and syntactic pattern matching.

First, we experimented with representations based on combinations of different POS
categories. These representations combine the category of nouns with that of adjectives,
verbs, and adverbs. The different representational choices are compared to the baseline
of using all keywords as index terms. Then, we experimented with composite terms
which were built, firstly, using a simple criterion like word adjacency , and secondly, using
syntactic structure like word modification. We also investigated the effect of morpho-
logical normalization by means of lemmatization, which can be seen as POS-directed
stemming. Evaluation is done in a document classification environment using 11-point
recall-precision, and average interpolated precision.

What is new in this approach is the variety of schemes evaluated. It is important since
it should not only help to overcome the well-known problems of bag-of-words representa-
tions, but also the difficulties raised by non-linguistic text simplification techniques such
as stemming, stop-word deletion, and term selection. Our findings apply to information
retrieval and most of its related areas.
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7.2.1 Unnesting to Binary Terms

Our long-term goal is to validate empirically the LMI model we introduced in Chapter 6.
We do not yet have a suitable way of structurally matching phrase frames.

In order to simplify the structural matching of phrases, and also to raise recall, we
currently follow the strategy of unnesting all complicated phrase frames (Koster et al.,
1999). A composed term like [a, [b, c]] is decomposed into two frames [b, c] and [a, b] using
b as an abstraction for [b, c]. When this decomposition is applied recursively, it results in
binary terms (BTs). As an example, consider the sentences

A student visits a conference on software engineering.
The software engineering conference is visited by some students.

from which, due to syntactical and morphological normalization, the same two frames
are initially constructed for both sentences:

BT1 = [student, visit], PF1 = [visit, [conference, [engineering, software]]].

PF1 is further unnested to

BT2 = [visit, conference], BT3 = [conference, engineering] ,

and BT4 = [engineering, software] .

Of course the unnesting makes it all the more important that a syntactical analyzer
should be able to deduce the right dependency structure in complicated phrases.

In the current phase of our experimentation, phrase frames are constructed only from
noun phrases, taking into account only prepositional phrase (PP) post-modifiers of nouns
starting with the preposition “of”. These PPs are more likely to modify the preceding
noun than others for which the PP-attachment problem has to be solved. However,
we were able to disambiguate the modification structure of complicated noun phrases by
applying statistical methods (see Section 7.2.3.1). We did not apply any lexico-semantical
normalization.

7.2.2 Representational Choices

The different indexing sets we experimented with are summarized below. The acronyms
will be used to refer to these choices in the rest of this chapter.

w (words): All word-forms found in text.

Sw (Stemmed words): All word-forms stemmed by a Porter stemmer. This is a tradi-
tional indexing scheme and serves as the baseline in order to compare the effective-
ness of the rest of the indexing schemes.

Lw (Lemmatized words): The same as w, except that all word-forms are lemmatized
with respect to their POS category. In all the following choices, lemmatization is
applied as standard.

Of course, for all w, Sw and Lw we eliminate words of low indexing value by using
a POS stop-list (Section 7.2.3.1).
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Ln (Lemmatized nouns): Nouns and proper nouns are well-known to be important in
retrieval. What happens if we omit all other keywords?

Lnj (Lemmatized nouns and adjectives): The combined effect of using the union of
nouns and adjectives is investigated in this experiment. These two categories cover
most of the words occurring in noun phrases.

Lnv (Lemmatized nouns and verbs): We investigate the combined effect of using the
union of nouns and verbs.

Lnjv (Lemmatized nouns, adjectives and verbs): This experiment serves as an indica-
tion of what might happen if we include to the indexing language only linguistic
entities which are extracted from noun or verb phrases. Moreover, the impact of
using adverbs for indexing can be measured indirectly by comparing Lnjv to Lw,
since the indexing set Lnjv can be constructed from Lw by removing adverbs.

Lap (Lemmatized adjacent word-pairs, extracted from NPs): These word-pairs consist
of the nouns and adjectives of Lnj, associated to form 2-word phrases by using the
adjacency criterion. The hypothesis for this experiment is that adjacent words can
be considered semantically related because of their proximity and be taken as one
term. We use an extended notion of adjacency by accepting non-adjacent words
as adjacent if the in-between words belong to certain POS categories. In fact,
these were all POS categories except the categories of nouns and adjectives (e.g.,
determiners, articles, or prepositions). For instance, the phrase “pollution of the
air” gives the adjacent pair pollution air. The initial word order was retained.

This is an important experiment because its comparison to Lbt (described next)
should measure the effect of syntactical normalization.

Lbt (Lemmatized binary terms (Lbt, extracted from NPs): These binary terms consist
of the nouns and adjectives of Lnj, associated to form 2-word phrases by using the
term modification criterion, i.e. head–modifier pairs. The head–modifier pairs are
computationally more expensive than adjacent pairs since syntactical normalization
is required, however, binary terms are syntactically canonical, e.g. both phrases “air
pollution” and “pollution of the air” are mapped onto the same head–modifier pair,
[pollution,air].

7.2.3 Experimental Setup

Our main concern is to evaluate different indexing schemes. Document classification, cat-
egorization, or routing environments provide a good test-bed for such evaluations. In such
environments, given a pre-classified corpus, the measurement of recall is straightforward,
while for classical retrieval systems it involves expensive human judgments.

The experimental system is based on the vector space model with a dot-product
similarity function (Section A.1), terms are weighted in a ltc fashion (Section A.2.1),
and classifiers are constructed automatically using Rocchio’s relevance feedback method
(Section A.4). We used the original Rocchio formula, that is, α = 0 and β = γ.
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Instead of making a binary decision to either assign a document to a class or not,
we allow the system to return a traditional ranked list of documents for every class:
most relevant first, least relevant last. Thus, evaluation is done with 11-point interpo-
lated recall–precision and average precision (Section A.5.2) on the Reuters-21578 text
categorization test collection. (Section A.6.1).

Since there is a large variation in the numbers of relevant training documents per
topic in the Reuters collection, we evaluate separately on small and large topics. As
small topics are considered the ones which have ten or less training documents (32 topics
in total), and the rest (58 in total) are considered as large.

7.2.3.1 Collection pre-processing

In order to obtain the appropriate indexing terms from the dataset for every experiment,
we applied some pre-processing. The pre-processing was performed in six steps:

1. Tokenization (script written in Perl): Detection of sentence boundaries followed
by division of sentences into words.

2. Part of speech tagging: Brill’s rule-based tagger3 (Brill, 1994) was employed to
obtain POS information for the contents of the dataset. The tagger comes with a
lexicon derived from both the Penn Treebank tagging of the Wall Street Journal
(WSJ), and the Brown Corpus. Conveniently, the WSJ articles are, like the Reuters
documents, about economic topics, thus this increased the reliability in tagging the
Reuters corpus.

3. Shallow parsing and term extraction (script written in Perl): Syntactic pat-
tern matching on the POS tags to extract noun phrases for the Lap and Lbt
experiments. For the Lbt experiment, the extracted noun phrases were further
syntactically normalized and unnested, while for the Lap they were just broken
down to adjacent word-pairs. For the rest of the experiments, the corresponding
terms were extracted based on the POS tags.

4. POS stop-listing (only for w, Sw, and Lw): It is well-known that the use of
a stop-list improves the quality of an indexing set. Traditionally, a stop-list is
constructed by taking a predetermined list of common function words. Since our
approach is based on a POS tagger, we used a POS stop-list to remove all words
belonging to the following categories: determiners (e.g., “a”, “the”, “all”), preposi-
tions and subordinating conjunctions (e.g., “in”, “to”, “of”), coordinating conjunc-
tions (e.g., “and”), pronouns (e.g., “I”, “yours”), the infinite marker “to”, modal
verbs (e.g., “would”, “must”), and all forms of the verbs “to be” and “to have”.

5. Disambiguation of the NP structure (only for Lbt, Perl script): Noun
phrases with more than two words can be structurally ambiguous. To disambiguate
the modification structure we applied statistical methods. First we collected fre-
quency information from the corpus for all noun phrases with two words. Then

3Eric Brill’s tagger V1.14 and a description are available by anonymous ftp from:
ftp://ftp.cs.jhu.edu/pub/brill in the Programs and Papers directories.
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all 3-word noun phrases were disambiguated by assigning to them the most prob-
able structure based on the frequencies of 2-word noun phrases. Gradually, this
was applied up to n-word noun phrases based on the frequencies of all previously
disambiguated k-word noun phrases (k < n). Where not enough frequency infor-
mation was available, left-dependence was assigned since it is the most probable
modification structure in the English noun phrase.

6. Morphological Normalization: Lemmatization was performed according to the
POS information by using WordNet’s v1.6 (Miller, 1995) morphology library
functions4.

For Sw, words were stemmed using the Porter stemmer of the Lingua::Stem (ver-
sion 0.30) extension to Perl.

7.2.4 Results and Discussion

Table 7.3 summarizes the average interpolated precision results of all experiments and
their percentage change with respect to the baseline of Sw, the traditional indexing
approach.

small topics large topics
run av. prec. change av. prec. change
w 0.525 −2.2% 0.696 +0.4%

Sw 0.537 baseline 0.693 baseline
Lw 0.547 +1.9% 0.693 0.0%
Ln 0.559 +4.1% 0.678 −2.2%
Lnj 0.563 +4.8% 0.695 +0.3%
Lnv 0.540 +0.5% 0.683 −1.4%

Lnjv 0.548 +2.0% 0.694 +0.1%
Lnj+Lap 0.633 +17.9% 0.730 +5.3%
Lnj+Lbt 0.620 +15.4% 0.732 +5.6%

Table 7.3: Average precision results.

7.2.4.1 Stemming vs Lemmatization

The experiments with unstemmed, stemmed and lemmatized words (w, Sw and Lw) as
index terms showed no significant differences in average precision (< 5.0%). That was
not expected, since it is well-known that stemming improves performance in retrieval
environments. However, this does not seem to be the case in classification environments.
Classifiers can been seen as long queries. While retrieval queries (especially in Web
environments) contain usually 2-3 keywords, the average length of our classifiers for these
experiments were 28.9, 26.1, and 26.1 keywords respectively. An automated method for

4Specifically, we called the morphstr() function which tries to find the base-form (lemma) of a
word or collocation, given its part-of-speech. WordNet is created by Cognitive Science Laboratory,
Princeton University, 221 Nassau St., Princeton, NJ 08542. It is available for anonymous ftp from
clarity.Princeton.edu and ftp.ims.uni-Stuttgart.de.
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building classifiers like Rocchio’s, given sufficient training data, will identify and include
all potential morphological variants of significant keywords into a classifier. This makes
any form of morphological normalization in such environments redundant. Nevertheless,
when no sufficient training data are available (like for the small topics), differences in
performance grow larger. In this case, lemmatization is slightly better than stemming
which is slightly better than no stemming at all.

The results suggest that for short queries (like in text retrieval), or for insufficient
training data (like at the beginning of a text filtering task), morphological normalization
will be useful, and lemmatization will be more beneficial for effectiveness than stemming
since it is less error-prone. For long and more precise queries (like classification queries
derived from sufficient training data), morphological normalization has no significant
impact on effectiveness. In any case, morphological normalization reduces the number
of terms an information seeking system has to deal with, so it can always be used as a
feature reduction mechanism.

7.2.4.2 POS-based Indexing

The experiments based on indexing sets derived from combinations of part-of-speech
categories (Ln, Lnj, Lnv, and Lnjv) presented, for large topics, no significant improve-
ments over the baseline of stemmed words. The same argument as above seems to apply
here as well: large training sets make linguistic information redundant. For small top-
ics, however, Ln and Lnj present almost significant (≈ 5.0%) improvements. All these
experiments included, at least, the category of nouns. When we tried to exclude nouns,
performance degraded greatly, confirming the importance of nouns for indexing.

A weak conclusion can be drawn. The union of nouns and adjectives (Lnj) performs
best, while the addition of verbs reduces performance, and adverbs do not make a dif-
ference (we should remind the reader that the only difference between the indexing sets
Lnjv and Lw is that the latter includes adverbs). The poor performance of verbs may be
related to a limited or poor usage of them in the Reuters data, or to some bad interaction
between nouns and verbs. A confusion between nouns and verb arises from the fact that
most nouns can be verbed (e.g., verb → verbed) and verbs can be nominalized (e.g., to
visit → a visit). This issue requires a further investigation.

Despite the non-significant differences in average precision, part-of-speech information
may be used to assist term selection mechanisms. Table 7.4 gives a comparison of the
number of distinct terms our system had to deal with in different experiments. It can

run distinct terms reduction
w 34030 baseline

Sw 27205 −20.0%
Lw 29377 −13.7%
Ln 23039 −32.3%
Lnj 26952 −20.8%
Lnv 24997 −26.5%

Lnjv 28804 −15.3%

Table 7.4: Distinct term occurrences.
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be seen that the lemmatized union of nouns and adjectives Lnj consists of 20.8% less
indexing terms than the indexing set of all keywords w, while it preserves the effectiveness
(it actually improves it for small topics). Such a POS-based feature reduction mechanism
has already been seen in (Rüger, 1998) where nouns and adjectives were assumed to be
most vital in representing document contents, but no comparative empirical evaluation
was given.

7.2.4.3 Composite Indexing Terms

Since the best performance was presented by Lnj, we decided to add to this run composite
terms in the form of lemmatized adjacent pairs Lnj+Lap, or lemmatized binary terms
Lnj+Lbt.

Both experiments led to significant improvements (> 5.0%) in average precision.
Considering Lnj as the baseline, the improvement was 12.4% (small topics) and 5.0%
(large topics) for adjacent pairs, and 10.1% (small topics) and 5.3% (large topics) for
binary terms. Figure 7.1 gives the 11-point interpolated recall-precision curves.

We did not use a special weighting scheme for composite terms. Composite terms were
simply mixed up with single terms and weighted using the same ltc weighting formula.
This clearly violates the term independence assumption of the vector space model. In
order to compensate for this, when single and composite (phrasal) terms are indexed
together, composite terms are traditionally weighted lower (Fuhr et al., 1993), something
we did not do. This suggests that there is margin for even better performance assuming
a proper weighting scheme.

Unfortunately, binary terms did not prove more effective than adjacent pairs. That
was unexpected, since the syntactically canonical nature of binary terms was thought to
outperform word adjacency criteria. In a further investigation, we measured how effective
the syntactical normalization had been. Figure 7.2 shows the comparative growth of
binary terms and adjacent pairs as the dataset grows in documents. In the whole
dataset, the total distinct adjacent pairs were 121,185, while the binary terms were
111,631 (7.9% less). Clearly, our syntactical normalization had some effect, but not as
extended as we expected.

How limited the syntactic normalization was, is more clear in Figure 7.3. It is well-
known that the number of distinct words in a growing document collection grows with
the square root of the total number of word occurrences. It is obvious from this figure
that this extends also to the subset of Lnj for our dataset. One could expect that the
same holds for composite terms, but the number of such enriched terms grows even faster.
We expected that the syntactically canonical nature of binary terms would have resulted
in a less steep curve than that of adjacent pairs, but obviously it did not.
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Figure 7.1: The impact of adding composite terms to nouns and adjectives.
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Figure 7.2: Number of distinct terms as a function of the number of documents.
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Figure 7.3: Number of distinct terms as a function of the total term occurrences. Two
square root curves are shown for comparison purposes. The curves of Lap and Lbt are
overlapping. Obviously, the growth of composite terms cannot be approximated with a
square root.
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7.3 Filtering and Linguistic Considerations

Our experimental results using linguistically-motivated indexing terms suggest that part-
of-speech information is beneficial to indexing. We found that a traditional keyword-
based indexing set can be reduced to retain only its nouns and adjectives without hurting
effectiveness, even slightly improving it.

Augmenting indexing sets with composite terms resulted in significant improvements
in effectiveness for both adjacent pairs and head–modifier pairs. Nevertheless, head–
modifier pairs have not proven better than adjacent pairs despite their syntactically
canonical nature. The natural language processing techniques used were very limited, but
the investigation suggests that using better linguistic tools would improve performance.

A comparison of lemmatization to stemming was not found to produce significant
improvements, although lemmatization is considered less error-prone. In fact, both of
these forms of morphological normalization were not found to improve significantly the
effectiveness of information seeking environments characterized by relatively complete
and accurate information needs, such as classification, categorization, or routing given
sufficient training data. However, it still seems beneficial for incomplete and imprecise
information needs, such as short retrieval queries or near the bootstrapping of filtering
tasks. In any case, morphological normalization as much as part-of-speech information
may be used to assist feature reduction techniques.
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Chapter 8

Conclusions and Further Research

This thesis has mainly dealt with two issues in information seeking:

• document filtering.

• representation of textual information.

In this final chapter, we summarize our approach and results, draw conclusions, and
discuss directions for further research.

8.1 Document Filtering

Document filtering is a task which assumes long-term user interests and dynamic infor-
mation sources. In contrast to traditional information retrieval, documents in filtering
are not all available at the time of the initiation of the task, but they arrive one by one
or in batches, forming a stream of documents. Therefore, a binary decision should be
made for each arriving document whether to retrieve it or not.

Filtering has been traditionally seen as a special case of the information retrieval
task. The long term nature of user interests has been explored by relevance feedback
mechanisms. Binary decisions have been enforced by thresholding the document scores
given by the probability of relevance or other similarity measures. However, relevance has
usually been assumed to be static over time, the relation between the value of information
and its temporal locality has not widely been explored, and not much effort has been
put into thresholding which has mostly been realized using ad hoc techniques. Our
contribution to filtering has been both theoretical and empirical, and concerns these
matters.

8.1.1 IF and IR: two sides of the same coin, indeed?

The starting point for our analysis and approach to filtering has been the article of (Belkin
and Croft, 1992) on the parallel between filtering and retrieval. Since then, the fact that
filtering and retrieval are different has become a well accepted view in the IR community
and we believe that our contribution goes definitely beyond that.
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In Chapters 1 and 2, we have presented a collection of ideas: a definition of the filtering
task, a definition of the filtering topic, two different classifications of topics (one based on
relevance and the other on temporal aspects), a classification of adaptivity, and ways of
using temporal information for retrieving documents and for feature selection. Moreover,
we have discussed potential dangers such as selectivity traps, and paid attention to
practical issues such as incrementality.

All these are the result of the bottom-up approach we have followed to deal with
filtering during the last few years. Guided by experiments, we have formulated what we
believe lies on top and is important for effectiveness as well as for efficiency. As our most
recent piece of work, Chapter 2 poses more questions than the answers we provide in
the rest of this thesis. Sometimes, however, well posed questions can be as important as
answers. Our formalization of the task may prove useful for the design of new approaches.

8.1.2 Time Distributions

In Chapter 3, we have experimented with time distributions. Our hypothesis has been
that terms which occur in a temporally-clustered manner correspond to temporal real-
world events, thus they are not good predictors for relevance in the future. We have
tested the hypothesis in a term selection experiment, eliminating terms whose occurrences
are not spread fairly in the time-line or in the sequence of relevant documents. Our
results have been inconclusive, although promising. The approach has been a brute-force
one, nevertheless, it has resulted in comparable effectiveness to eliminating terms with
document frequency thresholding. What has influenced most our approach in proving
the hypothesis, has been the dataset used: the Reuters-21578 collection. Its limited
time-span gives little scope for temporally local events.

At any rate, the issue of using time distributions in retrieval tasks is not settled.
In Chapter 3, we have considered time distributions of terms. Further research should
investigate other time distributions as well, such as those of relevant documents intro-
duced in Section 2.3. Certain features of a stream or of training data can be seen as time
series. Time series analysis and forecasting techniques may provide additional evidence
of relevance to those of traditional time-disregarding retrieval models. The mathemati-
cal background is already there; it should only be applied appropriately and evaluated
empirically. The most important issue is rather the availability of suitable data for ex-
perimentation. In our experience, such approaches require:

1. corpora collected over long periods of time.

2. time-stamped documents.

3. topics with large numbers of relevant documents.

The Reuters-21578 corpus does not satisfy the first requirement, and most of its topics
do not conform with the third either. The OHSUMED collection satisfies the first,
marginally the second, but not the third one. The lack of datasets suitable for controlled
retrieval experiments of this kind is a serious drag.
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8.1.3 The S-D Threshold Optimization

In Chapter 4, we have developed a novel method for optimizing thresholds, namely, the
score distributional (S-D) threshold optimization. The method is capable of optimizing
any effectiveness measure defined in terms of the traditional contingency Table 4.1. The
analysis we made, we believe, is general enough to apply to a range of retrieval models,
from probabilistic to vector space. Moreover, the method can be applied incrementally,
a highly desirable feature for adaptive environments.

We have provided a range of choices, from very accurate and computationally ex-
pensive to practical and less expensive approximations. Whether the more accurate
choices capitalize in improvements in classification effectiveness still remains to be seen.
A practical version of the S-D optimization was evaluated in the context of our TREC-9
experimentation and found to be very effective (Chapter 5).

Arguably, the S-D optimization is one of our most important contributions to fil-
tering and to binary classification tasks in general. The optimization is based on the
distributions of relevant and non-relevant document scores. Our work in modeling these
distributions may prove useful beyond threshold optimization problems. It can be ap-
plied to other retrieval environments that may use score distributions, e.g., distributed
retrieval (Baumgarten, 1999), or topic detection and tracking (Spitters and Kraaij, 2000).

8.1.4 The Prototype FilterIt System

FilterIt was developed to demonstrate the feasibility of our ideas and evaluate the
methods in the TREC-9 Filtering Track (Chapter 5). The system combines all our
methods together with other proven techniques in a rather consistent way. Moreover, we
have paid special attention to incrementality, minimizing the computational and memory
requirements without sacrificing too much accuracy. Let us summarize the techniques in-
corporated in FilterIt: accurate and incremental adaptivity as soon as a single training
document becomes available, local adaptivity, on-the-fly term selection, the S-D threshold
optimization, initial query elimination, and query zoning. Moreover, we have empirically
determined or at least motivated the effective range of any parameters.

Our first participation to TREC-9, has motivated a great deal of research, experimen-
tation, and triggered new ideas. We did not experiment again with time distributions,
however, for the dataset given was not suitable according to the requirements we men-
tioned above. Instead, we investigated the value of retrieved documents as training
examples with respect to their freshness by using local adaptivity. Local adaptivity is
necessary when tracking relevance drifts. For this purpose, we introduced the notion of
the half life of a training document. The approach has presented promising results, even
by using the same half life value for all topics filtered. However, effectiveness seemed to
be optimized for considerably different values per topic. Our plans for further research
include finding a way of detecting relevance drifts in order to select appropriate half life
values.
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We have found adaptive filtering an especially sensitive task. What makes it so
sensitive is that the system is provided with absolutely no relevance feedback for non-
retrieved documents. Any relevance statistics collected in this way are bound to be partial
in the sense that they do not represent a sample of the whole document space, but a
sample of the retrieved space, therefore they may be highly misleading. We believe that
this problem is important and that further research is required.

Overall, we are very satisfied with our adaptive results in TREC-9; we have clearly
achieved the best utility scores in the adaptive and batch-adaptive tasks that we have
participated. The approach of combining several techniques worked out well. The Fil-
terIt system is a typical example of: the whole is more than the sum of its parts .

8.2 Linguistically Motivated Indexing

In the last decade, the availability of large amounts of digital information, especially tex-
tual, has exposed the inadequate effectiveness of keyword-based retrieval models. It has
been conjectured many times that a better representation of textual information should
go beyond simple keywords, including groups of words (phrases), some form of regulariza-
tion of words, word order, and meaning. Indeed, many researchers have developed such
techniques, but experiments have shown considerable variation in effectiveness making it
difficult to establish which techniques actually work and which do not.

In Chapter 6, guided by failures and successes of previous research, we have developed
a phrase-based retrieval model which incorporates different kinds of linguistic normaliza-
tion. Since the goal was to improve retrieval and not to validate some linguistic theory,
the suggested scheme does not go into deep linguistic and semantic analysis. What is
new in our approach is not the individual techniques, but rather combining them in a
coherent and consistent way in a single model, removing details which we believe are
unnecessary for retrieval purposes, simplifying the matters greatly.

In Chapter 7, we set out to evaluate several linguistically motivated indexing (LMI)
schemes: a part of our suggested model and a few other simple choices. Although,
indexing concerns most information seeking tasks, our experiments mainly focused on
the performance of LMI in relevance feedback environments. The reason for this was
that the general context of the research described in this thesis has been information
filtering which is a certain type of relevance feedback environment.

Our empirical evaluation is not complete. We did not manage to evaluate the com-
bined effect of all methods described in in Chapter 6. In retrospect, such a full-scale
evaluation had been rather too ambitious. The normalization techniques we have tried
do not seem sufficient to improve retrieval effectiveness. More extended normalizations
have been developed for the lcs system (Koster et al., 1999), but we are still waiting
for their results. Nevertheless, our results so far suggest that part-of-speech information
is beneficial to indexing. We found that a traditional keyword-based indexing set can
be reduced to retain only its adjectives and nouns without hurting effectiveness, even
slightly improving it.
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The most important conclusion we can draw is that augmenting indexing sets with
composite terms — irrespective of whether these are linguistically canonical or not —
improves effectiveness in relevance feedback environments with large training data. Some
training/learning methods, given sufficient training data, may be capable of identifying
the potential composite terms automatically, making forms of non-extended normaliza-
tion less important. Nevertheless, when no sufficient training data are available, e.g. for
short retrieval queries or near the initiation of a filtering task, some forms of normaliza-
tion (e.g. morphological) are beneficial.

8.3 Outlook

With this thesis, we have contributed to improving the performance of information seek-
ing, by attacking several small but important problems related to: adaptive document
filtering, temporally-dependent data, and linguistically-motivated representations of tex-
tual information. We have tackled rather successfully the first two by presenting a useful
and unconventional formalization of the problem, practical solutions, and quite promising
empirical evaluations. Concerning the representation issue, we have present a model ca-
pable of dealing with linguistic variation, however, its validation has not been complete.
At any rate, our contribution to information seeking has brought up new interesting
questions, and may prove useful for the design of new effective approaches.

In retrospect, assuming that better information seeking means more user satisfaction,
perhaps a more radical change in the focus of research is needed. Maybe the future is
not to provide better ranking of retrieved documents but to supply the very information
a user is seeking. Filtering is a step in this direction, providing the documents that
may contain this information, instead of a ranked list. Moreover, a compact summary of
retrieval results or a brief answer might be more usable for an average user than sets of
documents. Automatic summarization, question answering, and information extraction
systems require advanced NLP techniques, however.

Two things seem certain for the future: Information seeking will keep diversifying
to serve new information needs of unprecedented nature, and NLP and other linguistic
resources will become an indispensable part of effective information seeking systems.
With the digital information overload, we are going through a golden age for the related
sciences and technologies.
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Appendix A

Basic Testbed

A.1 The Vector Space Model

In the vector space model (Salton, 1975), documents are represented by weighted vectors,
e.g.

D = [d1, . . . , dK ] , (A.1)

where di is the weight of the ith indexing term for this document, and K indexing terms
are used. A user request, called query is represented in the same manner, using the same
set of indexing terms:

Q = [q1, . . . , qK ] . (A.2)

An indexing term may be a word, phrase, or other linguistic entity. We will leave open
what a term is, and mention only that indexing terms are assumed to occur in docu-
ments in a statistically independent manner; i.e. each indexing term is considered an
independent dimension in the K-dimensional indexing space.

A measure of similarity between the document and the query is the cosine of the
angle of their vectors, i.e. cosine similarity . Assuming that document and query vectors
are normalized to unit lengths, the cosine similarity is the dot-product of their vectors:

S(D,Q) =
K∑

i=1

diqi . (A.3)

Filtering can be done by thresholding the similarity:

F (D,Q) =

{
select D , if S(D,Q) > θ .
reject D , otherwise .

(A.4)

The original vector space model does not cover several important issues:

• term weighting

• query adaptation

• threshold selection

Next, we will see how term weighting and query adaptation may be performed. We deal
with threshold selection in Chapter 4.
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A.2 Term Weighting

A.2.1 ltc

The ltc weighting scheme, commonly used in text retrieval (Buckley et al., 1994), specifies
the weight di of term i for a document D as

di =
tfi × log(N/ni)√∑K

j=1(tfj × log(N/nj))2
, (A.5)

where N is the total number of documents, ni is the number of documents in which term
i occurs, and tfi is

tfi =

{
0 , if fi = 0 .
log(fi) + 1 , otherwise.

(A.6)

fi is the number of occurrences of the term in D. Query terms are weighted in the same
way.

ltc has been found to perform better than other weighting schemes, e.g. atc, lnc, and
bnn, in document categorization tasks on the Reuters data (Section A.6.1) and in topic
detection and tracking on data from Reuters and CNN (Yang and Pedersen, 1997; Yang
et al., 1998). We have moreover tried binary weighting, and tf-thresholding (removing
all terms i with fi < 2 per document) before ltc weighting, but both have resulted in
worse performance than ltc in the Reuters-21578 dataset.

A.3 Learning

Filtering involves training data. As documents are filtered, users may explicitly provide
relevance judgements for some of the retrieved documents. Moreover, the system may
generate judgements inferred from user’s behaviour. Non-retrieved documents are not
presented to the user, thus no relevance judgments are generated for them. Judged
documents may be used as training data to adapt the initial user request in order to
achieve better effectiveness in the future.

When training documents are to be filtered for a profile, an ideal query Qideal should
score all relevant above a threshold θ and all non-relevant below. If Qideal exists, there
is an iterative procedure called fixed-increment error correction (Nilsson, 1965) which
ensures that any initial Q0 will converge to Qideal in a finite number of steps:

Qi =

{
Qi−1 + cD , if S(D,Qi−1) ≤ θ and D ∈ R .
Qi−1 − cD , if S(D,Qi−1) > θ and D ∈ N .

(A.7)

No changes are made to Qi−1 if it classifies correctly. The value of constant c is arbitrary
so it is usually set to 1. In practice, it may be necessary to iterate many times over the
training set before Qideal is reached. However, such an ideal query might just not exist;
or even if it does exist, it might be overfitting the training documents and not generalize
to new documents.
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A.4 Rocchio’s Relevance Feedback Method

Rocchio’s relevance feedback method (Rocchio, 1971) has been developed in the context
of the vector space model. Classifiers based on it have proven to be quite effective in
filtering and classification tasks (Ittner et al., 1995; Schapire et al., 1998; Ragas and
Koster, 1998). It performs well in a situation where only a few training documents are
available, see e.g. (Ragas and Koster, 1998), and this is exactly the case in the adaptive
filtering task. In such a situation, the initial query becomes important and the method
can moreover deal in a suitable way with the topic descriptions.

Rocchio defined the optimal query as the one which maximizes the difference between
the average score of relevant and the average score of non-relevant documents. Under
this definition, Rocchio showed that an optimal query vector is the difference between
the average vectors of relevant and non-relevant documents:

QRocchio =
1

|R|
∑

D∈R

D − 1

|N |
∑

D∈N

D , (A.8)

where |.| denotes the number of documents in a stream. Of course, any other vector
cQRocchio where c a positive constant is also optimal.

To maintain the focus of a user’s initial request Q0, researchers have found that it is
useful to include it in the formula. The version of Rocchio’s method traditionally used
for relevance feedback is

Qrelfeed = α Q0 + β
1

|R|
∑

D∈R

D − γ
1

|N |
∑

D∈N

D , (A.9)

where Q0 is the initial query, R and N are the sets of relevant and non-relevant documents
respectively, and |.| denotes the number of elements in a set. The parameters α, β, and
γ control the relative contribution of the initial query, and that of the relevant and non-
relevant documents to the new query Q. All components which end up with negative
weights in Qrelfeed are removed.

β and γ control the relative contribution of relevant and non-relevant documents.
Usually it is β > γ because relevant documents are better training examples than non-
relevant. Although, relevant documents indicate where the position of a topic in the
document space may be, non-relevant documents indicate where this is not without
giving a clue of its position. α controls the impact of training documents on the initial
query. The larger the α in comparison to β and γ, the more complete and precise the
initial query is assumed to be, so only minor modifications due to training are needed.
Typical values used for relevance feedback are α = 2, β = 4, and γ = 1 (Buckley et al.,
1994).

Over the years several techniques have been proposed to improve the effectiveness of
Rocchio’s method. These mainly aim at better term weights in training documents or
further optimization of the profile weights proposed by Rocchio’s formula, e.g. dynamic
feedback optimization (DFO) (Buckley and Salton, 1995). Other techniques, e.g. query
zoning (Singhal et al., 1997), concentrate on selecting a subset of non-relevant documents
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for training, the ones that have some relationship to user’s interest. Sampling the non-
relevant document space first to form a query zone and then using only this zone as
negative feedback has been found to improve Rocchio’s effectiveness.

The query zone is formed as follows. All non-relevant documents are ranked according
to their similarity to the initial user request. Then only the top-k most similar are used

for training, with typical k = max
(
|R|, |R∪N|

c

)
, i.e. the query zone size is at least equal

to the number of relevant documents and grows with the size of the training stream,
where c = 100 (Schapire et al., 1998). When using query zones, it has been shown that
β = γ is a reasonable parameter setting (Singhal et al., 1997).

Rocchio’s formula does not only modify the weights of the initial query but it also
expands it to include new terms. (Buckley et al., 1994) have found that the recall–
precision effectiveness increases linearly with the log of the number of terms added, thus
massive expansion works out well. Moreover, in the same study it has been found that
there is a similar relationship between the log of the number of relevant documents used
and the recall–precision effectiveness.

A.5 Effectiveness Measures

In this section, we define the effectiveness measures we use throughout this book. The
reader should recall the contingency Table 4.1 and Section 4.2.

A.5.1 Set-based

• precision:

P =
R+

R+ + N+
. (A.10)

• recall:

R =
R+

R+ + R−
. (A.11)

• F-measure:

Fβ =
(β2 + 1)PR

β2P + R
, β ∈ [0, +∞] . (A.12)

In Section 5.2.4, we have discussed the evaluation measure trends in the TREC Fil-
tering Track. We have moreover given the definitions of the T9U and T9P measures.
T9P is a variant of precision that demands a minimum number of documents to be re-
trieved, penalizing smaller retrieved sets. T9U is a linear utility function (Sections 4.2.1
and 4.5.3) with a fixed lower bound that ensures that an individual topic which performs
really badly will not dominate the average over all topics.



Sec. A.6 – Test Collections 133

A.5.2 Rank-based

• average non-interpolated precision:

Pnon interpolated =
1

r

r∑

i=1

Pi , (A.13)

where Pi is the precision at the position of the ith relevant document in the ranked
list.

• 11-point interpolated recall–precision:

First, the recall and precision are calculated at every rank of the list. If any
relevant documents score zero, they are ranked at the bottom of the list below all
non-relevant which score zero. Then, the pairs of recall–precision are interpolated
at 11 standard recall levels Rs = s, s = 0, 0.1, . . . , 1. We use the interpolation
method described in (van Rijsbergen, 1979). According to this method, a set of
recall-precision pairs G = {(R,P )} is interpolated as:

Ps = {max P : R′ ≥ Rs and (R′, P ) ∈ G} , (A.14)

where Ps is the precision at the standard recall level Rs. This interpolation method
estimates at Rs the best possible precision achieved by the system.

• 11-point interpolated average precision:

P11 point interpolated =
1

11

∑

s

Ps . (A.15)

A.6 Test Collections

In Section 5.2.3, we have described the OHSUMED collection, which was used as test data
in the TREC-9 Filtering Track (Chapter 5). We will briefly describe here the Reuters
collection, which we have used for our term selection (Chapter 3) and linguistically-
motivated indexing (Section 7.2) experiments.

A.6.1 Reuters-21578

The Reuters-21578 (distribution 1.0) text categorization test collection is a resource freely
available for research in Information Retrieval, Machine Learning, and other corpus-based
research1.

For our experiments, we produce the Modified Apte (ModApte) split (training set:
9,603 documents, test set: 3,299 documents, unused: 8,676 documents). The ModApte
split is a subset of the Reuters documents about economic topics such as income, gold ,
and money-supply . (Hayes and Weinstein, 1990) discuss some examples of the policies

1More information, the collection, and its documentation are available from:
http://www.research.att.com/∼lewis/
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(not always obvious) used by the human indexers in deciding whether a document belongs
to a particular topic category. Documents can be assigned to more than one topic, i.e.
they are multi-classified . We use only the topics which have at least one relevant training
document and at least one relevant test document; these are 90 topics in total.
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Threshold Optimization

In this appendix, we investigate whether a Central Limit Theorem (Laha and Rohatgi,
1979) applies to Sm (Equation 4.19) in the limit of a large number of dimensions m, and
that the score distribution becomes Gaussian in this limit. If the answer to the question
whether a Gaussian limit appears is yes, then the next question is when it appears, i.e.,
how soon Gaussian shapes appear as m grows.

First, we1 prove in Appendix B.1 that a Gaussian limit is not likely for the distribution
Pnr of non-relevant document scores, and if it appears, then only at a very slow rate with
m. In Appendix B.2 we prove that that a Gaussian limit appears for the distribution Pr

of relevant document scores. Furthermore, we show that the distribution approaches the
Gaussian quickly, such that corrections go to zero as 1/m.

B.1 Non-Gaussian Limit for Non-Relevant

Let Cnr be the class of non-relevant documents. In order to investigate the behavior of the
score distribution for Cnr, we investigate the cumulants (Laha and Rohatgi, 1979). These
are defined through the moment generating function φ(−ıt) of the score distribution,
where φ is the characteristic function.

K(r)
m :=

drlog φ(−ıt)

dtr

∣∣∣
t=0

. (B.1)

The first cumulant K(1)
m is equal to the mean of the distribution, and the second cumulant

K(2)
m is equal to the variance. For a given random variable Sm with given cumulants K(r)

m ,
the cumulants of the variable

Ŝm :=
Sm − K(1)

m
(
K(2)

m

)1
2

, (B.2)

shifted such that it has zero mean and unit variance, are given by

K̂(1)
m := 0 , K̂(r)

m :=
K(r)

m
(
K(2)

m

)r
2

r ≥ 2 . (B.3)

1In fact, André van Hameren should be credited for the two proofs in Appendix B.1 and B.2. Without
André’s knowledge of higher mathematics, these proofs would not have been possible.
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For a Gaussian distribution, the logarithm of the moment generating function is given
by

log φ(−ıt) := tK(1)
m +

t2

2
K(2)

m . (B.4)

The above trivially leads to the conclusion that

Theorem 1 whenever limm K̂(r)
m → 0 for all r ≥ 3, then Ŝ = limm Ŝm is a normal vari-

able, that is, it has a Gaussian probability distribution with zero mean and unit variance.

This theorem is not the most efficient to prove a Gaussian limit, because it asks for the
limiting behavior of all cumulants, but it gives a view on how fast the limit appears:
if the cumulants K̂(r)

m go to zero for large m at a very slow rate, then the probability
distribution will start to look Gaussian only for very large m.

Because of the independence assumption, the characteristic function factorizes over
the components (Equation 4.21), so that its logarithm becomes a sum over the compo-
nents of logarithms

K(r)
m =

m∑

i=1

qr
i κ

(r)
i , κ(r)

i :=
drlog φi(−ıt)

dtr

∣∣∣
t=0

. (B.5)

The moments of the components depend linearly on the TPs: according to (4.23) we
have

E(ωr
i ) =

∫ ∞

−∞
xr pi(dx) = εi

∫ ∞

−∞
xr dFi(x) . (B.6)

The cumulants can be written as finite sums of products of the moments, so that in this
case κ(r)

i is a polynomial in εi, i.e.

κ(r)
i = εiF

(r)
i + P2,r(εi) , F (r)

i :=

∫ ∞

−∞
xr dFi(x) , (B.7)

where P2,r(ε) denotes a polynomial in ε containing orders 2 to r. The interpretation of
the cumulants as an expansion in the TPs makes sense, because the TPs are smaller than
1 by definition.

Now, we shall try to derive from the constructed model whether the score distribution
converges to a Gaussian for large m, and if it does, what the rate of convergence is. In
order to achieve this, we want to replace the sum in Equation B.5 by m times the
average query component times the average cumulant. To do this, we need some more
assumptions.

The first one is based on the empirical observation that, whereas the TPs εi and
the moments E(ωi) and E(ω2

i ) of the components vary several orders of magnitude, the
ratios E(ωi)/εi and E(ω2

i )/εi vary within only one order of magnitude. Together with
Equation B.6, the mentioned observation leads to the conclusion that the PDFs Fi do
not vary much for the different components, or at least that the variations do not matter
much. The important differences between the distributions of the components seems to
come from the TPs. We implement this in our model by the assumption that
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Assumption 2 the PDFs Fi are the same for all components, and equal to a single PDF
F .

In order to determine the rate of convergence, we intend to use Theorem 1, so that
we need to determine the behavior of the cumulants for large m. According to (B.5) and
(B.7), we then need the distributions of the query components (QCs) and the TPs. For
both cases, we specify the distribution of the variable by applying a generalization of
Zipf ’s law . For QCs let denote

q̄m = the value of the maximal QC. (B.8)

For every m, there is a mapping Qm with Qm(1) = 1, such that the ordered labeling of
the variables satisfies

qi = q̄mQm(i) for every i = 1, . . . ,m . (B.9)

Zipf’s classical law is obtained with Qm(i) = 1/i. The distribution of the variable has
moments

q(r)
m =

q̄r
m

m
Q(r)

m , Q(r)
m :=

m∑

i=1

Qm(i)r . (B.10)

By definition, the mapping Qm is decreasing with Qm(1) = 1, so that Qm(i)r1 ≥ Qm(i)r2

for all i = 1, . . . ,m if r1 < r2 and

Q(r1)
m ≥ Q(r2)

m for r1 < r2 . (B.11)

Furthermore, all moments exist, also in the limit of m → ∞, since in the worst case we
would have Qm(i) = 1 for all i = 1, . . . ,m, so that q(r)

m = q̄r
m. Therefore, we conclude

that
Q(r)

m = O(m) for all r > 0 , (B.12)

where the O-symbol refers to the behavior with m: we say am = O(bm) if there is a
sequence of numbers cm such that |am/bm| < cm for all m, and limm→∞ cm exists. The

sums Q(r)
m do not have to exist in the limit m → ∞: for example in the classical Zipf

case, we have Q(1)
m = log m + O(1).

Exactly the same can be done for the TPs, leading to a maximal value ε̄m, a decreasing
mapping Em with Em(1) = 1 and such that εi = ε̄mEm(i). The moments of the TPs are

denoted ε(r)
m .

At this point, we want to notice that the ordering (B.11) of the coefficients E (r)
m

corresponds with the ordering of powers of ε̄m, which supports the approximation to

Approximation 1 keep only the lowest order in εi for every i = 1, . . . ,m in (B.7),

since εi is smaller than 1.
The following assumption is based on the empirical observation that QCs and TPs

seem to take their values independently: if we order the QCs, and make a plot of the
values of the corresponding TPs in this ordering, they seem to jump around randomly.
This suggests to assume that
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Assumption 3 the TPs and the QCs take their values independently of each other,

so that the average over the TPs can be taken independently of the average of the QCs.
Assumption 3 together with (B.5) and Approximation 1 lead to

K(r)
m

m→∞−→ m q(r)
m ε(1)

m F (r) =
1

m
q̄r

mQ(r)
m ε̄mE (1)

m F (r) . (B.13)

The interesting ratio of the cumulants is then given by

K(r)
m

(
K(2)

m

) r
2

=
Q(r)

m
(
Q(2)

m

) r
2
×

(
m

ε̄mE (1)
m

)r
2−1

× F (r)

(
F (2)

) r
2

. (B.14)

According to Theorem 1, the score distribution becomes Gaussian for large m if this final
expression vanishes for all r ≥ 3.

The main use of Assumption 3 is that it enables us to give an estimate of the ratios on
the l.h.s. of Equation B.14, in which the contribution of the query completely factorizes
from the contribution from the document distribution. A possible difference in the rate
of convergence between two document classes only appears in the second and the third
factor of the r.h.s. of Equation B.14.

The contribution from the first factor on the r.h.s. of Equation B.14 is determined by
the distribution of the QCs. Using (B.11) and the fact that Q(r)

m ≥ 1 for every r ≥ 3, we
see that

lim
m→∞

Q(r)
m

(
Q(2)

m

) r
2

= 0 ⇐⇒ lim
m→∞

1

Q(2)
m

= 0 . (B.15)

So the contribution from the QCs only helps towards a Gaussian limit if limm→∞Q(2)
m =

∞. We observe a behavior of the distribution of the QCs such that Qm(i) ∼ (i)−ν with
0.5 < ν < 1. For this behavior, only the case of ν = 0.5 would, strictly speaking, lead to
the first factor on the r.h.s. of Equation B.14 to become zero, as (log m)r/2. We conclude
that, if the distribution of the QCs helps towards a Gaussian limit, then only very slowly.

The third factor on the r.h.s. of Equation B.14 does not vary with m (by Assump-
tion 2), so that we further only need to look at the second factor, which is determined
by the distribution of the TPs. Since ε̄m ≤ 1, only the behavior of the mapping Em can
help towards a Gaussian limit, and then only if limm→∞ E (1)

m does not exist. However,
we know that E (1)

m = O(m), so that the second factor on the r.h.s. of Equation B.14 will
never go to zero.

We conclude that it is not likely for Cnr to show a Gaussian limit, and if it does, then
only at a very slow rate with m.

B.2 Gaussian Limit for Relevant

The analysis for Cnr was possible mainly because the TPs were assumed to be small. For
the class Cr of relevant documents, this does not have to be the case anymore. Actually,
the introduction of the TPs does not seem to make sense anymore if they have to be
considered close to 1.
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For Cr, it seems to be more appropriate to adopt the picture of Pm to be centered
around a point q′ ∈ IRm. It could, for example, have a multi-dimensional Gaussian shape
around q′, or could be non-zero only inside a hyper-ellipsoid around q′ and zero outside.
In both examples, the distribution is completely defined by q′, and a matrix Um: for the
Gaussian case, it is the variance matrix, and the other case the matrix determines the
shape of the ellipsoid. We shall assume that the distribution of Cr can be defined by these
three elements: the center q′, the ‘shape’-matrix Um, and a function that determines the
rate of decrease (reasonably fast for a Gaussian, infinitely fast for the ellipsoid, and so
on). We summarize the above as

Assumption 4 in the case of Cr, for every m there is an invertible m × m-matrix Um

and a point q′ ∈ IRm such that

Pm(dω) =
| det Um|

νm
f( ∥Um(ω − q′)∥2 ) dω , (B.16)

where νm :=
∫

IRm f( ∥ω∥2 )dω is the volume of the function f in IRm, and this function
is such that νm does not grow faster with m than a power of m!.

The factor | det Um| is necessary for the correct normalization of the probability distri-
bution in IRm. For example with the Gaussian shape, (UT

mUm)−1 is the variance matrix
in this formulation, and f(x2) = exp(−1

2x
2). Notice that Pm induces the ‘natural’ metric

∥ω∥Um
:= ∥Umω∥.

Let us denote

Vm := (U−1
m )T and αm :=

√
2π

νm−2

νm
. (B.17)

Furthermore, let Sm be the random variable representing the score of documents from
Cr with probability measure (B.16). We will prove that, under the above assumption,

Theorem 2 the limiting variable of the sequence

σm := αm
Sm − ⟨q, q′⟩

∥Vmq∥
is a normal variable.

Furthermore, we will show that the distribution of σm approaches the Gaussian such that
corrections go to zero as 1/m.

We start with expressing νm :=
∫

IRm f( ∥ω∥2 )dω in terms of a one-dimensional inte-
gral. This is possible because the integrand only depends on the length of ω, so that we
can go over to spherical coordinates and write

νm = γm

∫ ∞

0

f(x2)xm−1 dx , γm :=
2π

m
2

Γ(m
2 )

, (B.18)

where γm is the volume of an m-dimensional sphere with unit radius, and Γ denotes the
gamma-function. At this point, we want to note a few facts we shall need later. Firstly,
we have

γm−1

γm−3
= π

Γ(m−3
2 )

Γ(m−1
2 )

= π
Γ(m−3

2 )
m−3

2 Γ(m−3
2 )

=
2π

m − 3
. (B.19)
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Secondly, since we demand that νm exists for every m, we obviously have

lim
x→∞

f(x2)xm−1 = 0 for every m . (B.20)

Thirdly, since we demand that νm does not grow faster with m than a power of m!, we
have

lim
m→∞

αm−2

αm
= lim

m→∞

√
νm

νm−2
× νm−4

νm−2
= 1 . (B.21)

We shall prove the theorem by proving that the moments of the the variables σm converge
towards the moments of a Gaussian variable. Under the distribution (B.16) the variable
σm has moments

E(σr
m) =

∫

IRm

(
αm

⟨q,ω⟩ − ⟨q, q′⟩
∥Vmq∥

)r

Pm(dω)

=
αr

m

νm

∫

IRm

⟨Vmq,ω⟩r

∥Vmq∥r
f( ∥ω∥2 ) dω , (B.22)

where we performed the substitution ω 4→ U−1
m ω + q′ on the integration variable. To

prove that all moments exist, we can apply the Schwartz inequality, and go over to
spherical coordinates to find that

E(|σm|r) ≤
αr

mγm

νm

∫ ∞

0

xrf(x2)xm−1 dx = αr
m

νm+rγm

νmγm+r
. (B.23)

In order to evaluate (B.22) further, we note that every ω can be written as a linear
combination of ωp parallel to Vmq and an orthogonal component ωo, so that ∥ω∥2 =
∥ωp∥2 + ∥ωo∥2. Furthermore, we can always perform an orthogonal basis transformation
such that ωp lies along a coordinate axis of IRm, so we can write ⟨Vmq,ω⟩ = ∥Vmq∥ωp,
and

E(σr
m) =

αr
m

νm

∫ ∞

−∞
yr

∫

IRm−1
f( y2 + ∥ωo∥2 ) dωo dy .

The integrand is spherical symmetric in ωo, so that we can go over to spherical coordinates
again, and the integral over IRm−1 reduces to a one-dimensional integral

E(σr
m) =

∫ ∞

−∞
yrfm(y) dy , (B.24)

where

fm(y) :=
γm−1

νmαm

∫ ∞

0

f
( y2

α2
m

+ x2
)

xm−2 dx . (B.25)

So the moments of the variable σm are equal to the moments of a variable with probability
density fm.
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We will now prove that the sequence of density functions fm has a Gaussian limit.
Denote the derivative of f by f ′, then

dfm(y)

dy
=

γm−1

νmαm

2y

α2
m

∫ ∞

0

f ′
( y2

α2
m

+ x2
)

xm−2 dx

= − γm−1

νmαm

y

α2
m

(m − 3)

∫ ∞

0

f
( y2

αm
+ x2

)
xm−4 dx

= −y
αm−2

αm
fm−2

(αm−2

αm
y
)

,

where we applied partial integration and used (B.20) in the second step, and used Equa-
tion B.19 and the definition of αm in the last step. Using (B.21), we find that the limiting
density f∞ satisfies the differential equation

df∞(y)

dy
= −yf∞(y) ,

which has a Gaussian with zero mean and unit variance as solution. Notice that conver-
gence via the differential equation implies pointwise convergence, so that we can conclude
that the moments E(σr

m) become those of a Gaussian distribution with zero mean and
unit variance. This then, leads to the conclusion that σm becomes a normal variable.

One might argue that f has to be continuous for this proof, for its derivative is used.
This derivative, however, only shows up under an integral, so that it is well defined for
discontinuous functions with the help of Dirac distributions.

To answer the question how fast the Gaussian limit appears, we just take νm =
a(m!)k + O( (m!)k ) with some a, k > 0, so that it is easy to see that

αm−2

αm
= 1 + O

( 1

m

)
, (B.27)

and we can conclude that the distribution converges to the Gaussian as 1/m.
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B.3 Score Distributions and Optimal Threshold
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Figure B.1: Empirical and theoretical score distributions.



Sec. B.4 – Incremental Mean of Scores 143

0

1

2

3

4

5

0 50 100 150 200 250
score

OPTIMAL T9U THRESHOLD FOR FT-391

2 * 183 * Gaussian
exponential fit on top-100

exponential fit on top-50
exponential fit on top-25
exponential fit on top-10

Figure B.2: The optimal T9U threshold.

B.4 Incremental Mean of Scores

Let us assume r documents ω1, . . . ,ωr, and a query q. The mean score µr of the docu-
ments is:

µr =
1

r

r∑

i=1

⟨q,ωi⟩

=
1

r
(⟨q,ω1⟩ + · · · + ⟨q,ωr⟩)

=
1

r

(
∑

j

qjω1j + · · · +
∑

j

qjωrj

)

=
1

r

∑

j

qj (ω1j + · · · + ωrj)

=
1

r

∑

j

qj

r∑

i=1

ωij

=
1

r
⟨q,

r∑

i=1

ωi⟩ .

Obviously, the sum of the document tuples is sufficient for calculating the mean score,
consequently the individual document tuples can be discarded, i.e. no document buffers
are necessary.
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B.5 Incremental Mean of Squared Scores

Let us assume r documents ω1, . . . ,ωr, and a query q. The mean of the squared scores
µ(2)

r of the documents is:

µ(2)
r =

1

r

r∑

i=1

⟨q,ωi⟩2

=
1

r

(
⟨q,ω1⟩2 + · · · + ⟨q,ωr⟩2

)

=
1

r

(
∑

j

qjω1j

∑

k

qkω1k + · · · +
∑

j

qjωrj

∑

k

qkωrk

)

=
1

r

(
∑

jk

qjqkω1jω1k + · · · +
∑

jk

qjqkωrjωrk

)

=
1

r

∑

jk

qjqk (ω1jω1k + · · · + ωrjωrk)

=
1

r

∑

jk

qjqk

r∑

i=1

ωijωik

=
1

r

∑

jk

qj

(
r∑

i=1

ωijωik

)
qk .

Like the case of the mean score, the individual documents are not necessary for calculating
the mean of the squared scores. The sum between the parentheses can be represented by
a 2-dimensional matrix which can be updated incrementally when new documents arrive.



Appendix C

TREC-9 Filtering Results

In this appendix, we provide the official TREC-9 evaluation tables of our submitted runs.
The results are presented per topic, as well as, averaged over all topics.

The column labeled #rel give the total number of relevant documents per topic in
the OHSUMED 1988–1991 collection (the test stream). The min, med, and max columns
give respectively the minimum, median, and maximum score of all runs submitted by
any participant for the corresponding tasks.

In Appendix C.3, the two rightmost columns labeled as FilterIt-b and FilterIt-ba
are not official; they correspond to two post factum runs we made, and they are added to
the official table for comparison purposes. The same holds for the column FilterIt-r
in Appendix C.4.
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C.1 Adaptive — OHSU topics, Eval: T9U
KUNa1T9U KUNa2T9U All Results

Topic #rel score score min med max
OHSU1 44 37 25 -100 -15 44
OHSU2 44 5 0 -27 -1 11
OHSU3 165 129 170 -100 31 170
OHSU4 12 5 5 -100 -7 6
OHSU5 44 30 27 -100 -2 40
OHSU6 27 -3 -3 -100 -33 -1
OHSU7 19 7 8 -100 6 13
OHSU8 11 -1 -1 -100 -31 -1
OHSU9 44 -3 -4 -100 -11 5
OHSU10 19 -5 -4 -63 -10 1
OHSU11 84 48 44 -100 5 48
OHSU12 7 -3 -3 -100 -12 -2
OHSU13 77 -1 -1 -100 -4 4
OHSU14 44 -2 -2 -98 -12 8
OHSU15 36 8 3 -100 -12 9
OHSU16 49 10 14 -22 -5 14
OHSU17 27 10 8 -100 -16 10
OHSU18 99 31 22 -100 0 31
OHSU19 95 79 123 -100 20 133
OHSU20 19 13 12 -79 -1 13
OHSU21 112 -1 -1 -100 -7 9
OHSU22 19 -2 -3 -100 -9 1
OHSU23 78 84 84 -45 31 87
OHSU24 74 48 49 -100 7 49
OHSU25 44 -6 -7 -100 -9 -1
OHSU26 43 55 57 -100 6 57
OHSU27 3 -34 -22 -100 -16 0
OHSU28 48 36 39 -36 -3 39
OHSU29 95 56 59 -21 4 59
OHSU30 172 115 80 -84 -4 115
OHSU31 55 -4 1 -71 -3 6
OHSU32 59 -2 -3 -100 -6 0
OHSU33 145 58 24 -100 0 58
OHSU34 12 -2 -2 -100 -9 -1
OHSU35 110 57 88 0 51 103
OHSU36 54 24 11 -100 -8 24
OHSU37 75 33 50 -100 -2 50
OHSU38 62 51 44 -100 28 58
OHSU39 127 -3 2 -100 -6 2
OHSU40 46 17 26 -100 1 29
OHSU41 19 -3 -3 -100 -5 2
OHSU42 53 4 -1 -100 -5 4
OHSU43 60 51 52 -100 18 95
OHSU44 42 -1 -2 -100 -4 19
OHSU45 15 -5 -5 -100 -10 0
OHSU46 25 6 7 -28 -4 7
OHSU47 45 0 0 -23 -1 11
OHSU48 69 -2 -2 -100 -7 12
OHSU49 75 -2 -2 -100 -31 15
OHSU50 27 -3 -3 -100 -11 0
OHSU51 57 -2 -2 -100 -9 13
OHSU52 13 6 2 -100 -32 6
OHSU53 3 -1 -1 -100 -8 0
OHSU54 12 -2 -2 -100 -8 4
OHSU55 30 9 3 -100 -5 9
OHSU56 24 13 11 -100 -6 20
OHSU57 26 13 16 -100 -9 16
OHSU58 10 -2 0 -100 -4 3
OHSU59 45 7 11 -77 -2 19
OHSU60 44 -4 -4 -100 -9 2
OHSU61 26 6 2 -29 -3 6
OHSU62 23 -3 -3 -100 -10 -3
OHSU63 63 -3 0 -100 -7 5
Average 16.8 17.3
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C.2 Adaptive — OHSU topics, Eval: T9P
KUNa2T9P KUNa1T9P All Results

Topic #rel score score min med max
OHSU1 44 0.360 0.327 0.032 0.380 0.560
OHSU2 44 0.180 0.314 0.120 0.351 0.442
OHSU3 165 0.670 0.714 0.100 0.655 0.779
OHSU4 12 0.040 0.135 0.000 0.103 0.182
OHSU5 44 0.160 0.333 0.081 0.340 0.549
OHSU6 27 0.040 0.040 0.033 0.075 0.119
OHSU7 19 0.180 0.157 0.000 0.232 0.353
OHSU8 11 0.020 0.020 0.000 0.002 0.111
OHSU9 44 0.100 0.173 0.000 0.175 0.351
OHSU10 19 0.080 0.080 0.000 0.060 0.151
OHSU11 84 0.551 0.481 0.074 0.440 0.551
OHSU12 7 0.020 0.000 0.000 0.016 0.096
OHSU13 77 0.140 0.260 0.020 0.236 0.340
OHSU14 44 0.240 0.200 0.000 0.188 0.333
OHSU15 36 0.160 0.160 0.079 0.200 0.273
OHSU16 49 0.120 0.196 0.000 0.246 0.415
OHSU17 27 0.120 0.100 0.033 0.154 0.240
OHSU18 99 0.420 0.468 0.000 0.268 0.468
OHSU19 95 0.691 0.640 0.000 0.640 0.791
OHSU20 19 0.180 0.180 0.000 0.180 0.315
OHSU21 112 0.320 0.526 0.046 0.220 0.526
OHSU22 19 0.200 0.212 0.000 0.138 0.212
OHSU23 78 0.520 0.653 0.363 0.660 0.836
OHSU24 74 0.426 0.533 0.140 0.463 0.643
OHSU25 44 0.000 0.039 0.000 0.001 0.259
OHSU26 43 0.420 0.439 0.123 0.411 0.580
OHSU27 3 0.000 0.000 0.000 0.000 0.039
OHSU28 48 0.260 0.400 0.000 0.300 0.500
OHSU29 95 0.580 0.481 0.217 0.453 0.580
OHSU30 172 0.580 0.593 0.079 0.500 0.593
OHSU31 55 0.140 0.250 0.000 0.275 0.365
OHSU32 59 0.080 0.160 0.000 0.060 0.160
OHSU33 145 0.507 0.439 0.077 0.403 0.580
OHSU34 12 0.000 0.000 0.000 0.060 0.111
OHSU35 110 0.727 0.732 0.000 0.727 0.780
OHSU36 54 0.360 0.356 0.040 0.220 0.360
OHSU37 75 0.520 0.411 0.000 0.370 0.520
OHSU38 62 0.540 0.526 0.180 0.540 0.740
OHSU39 127 0.240 0.220 0.045 0.200 0.340
OHSU40 46 0.320 0.396 0.020 0.377 0.509
OHSU41 19 0.040 0.060 0.000 0.074 0.216
OHSU42 53 0.080 0.080 0.000 0.140 0.258
OHSU43 60 0.680 0.618 0.168 0.618 0.704
OHSU44 42 0.100 0.080 0.080 0.135 0.420
OHSU45 15 0.000 0.040 0.000 0.020 0.060
OHSU46 25 0.080 0.196 0.000 0.080 0.211
OHSU47 45 0.200 0.216 0.000 0.240 0.306
OHSU48 69 0.180 0.431 0.000 0.200 0.462
OHSU49 75 0.160 0.203 0.056 0.160 0.375
OHSU50 27 0.140 0.180 0.101 0.155 0.283
OHSU51 57 0.098 0.140 0.002 0.180 0.386
OHSU52 13 0.060 0.100 0.022 0.080 0.100
OHSU53 3 0.000 0.000 0.000 0.000 0.027
OHSU54 12 0.080 0.137 0.000 0.109 0.180
OHSU55 30 0.040 0.100 0.000 0.180 0.368
OHSU56 24 0.240 0.176 0.045 0.138 0.333
OHSU57 26 0.260 0.216 0.036 0.236 0.360
OHSU58 10 0.040 0.020 0.000 0.060 0.143
OHSU59 45 0.280 0.302 0.000 0.302 0.400
OHSU60 44 0.212 0.258 0.000 0.180 0.340
OHSU61 26 0.160 0.160 0.040 0.160 0.193
OHSU62 23 0.080 0.059 0.000 0.073 0.160
OHSU63 63 0.098 0.140 0.000 0.098 0.200
Average 0.231 0.258
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C.3 Batch — OHSU topics, Eval: T9U
KUNbaT9U KUNb All Results FilterIt-b FilterIt-ba

Topic #rel score score min med max score score
OHSU1 44 25 17 0 17 27 11 28
OHSU2 44 16 11 0 11 16 8 26
OHSU3 165 174 120 -3 120 174 139 177
OHSU4 12 3 -2 -2 2 4 3 2
OHSU5 44 22 23 0 22 28 10 28
OHSU6 27 -21 -10 -21 0 0 -11 -6
OHSU7 19 12 6 -3 6 16 13 13
OHSU8 11 -29 -7 -29 -1 0 -10 -8
OHSU9 44 -10 -55 -55 -3 0 -20 -4
OHSU10 19 -16 -5 -16 0 0 1 -5
OHSU11 84 44 17 0 28 46 68 45
OHSU12 7 -13 1 -13 0 1 -1 0
OHSU13 77 16 -17 -17 4 16 1 -6
OHSU14 44 25 -1 -1 1 25 3 12
OHSU15 36 1 -5 -5 -2 1 4 4
OHSU16 49 1 -30 -30 1 17 0 -7
OHSU17 27 8 -18 -18 0 8 0 5
OHSU18 99 16 -31 -31 6 19 -42 9
OHSU19 95 125 100 -4 65 125 61 131
OHSU20 19 5 6 0 5 7 8 7
OHSU21 112 66 20 -1 2 66 62 74
OHSU22 19 -2 0 -2 0 1 0 -4
OHSU23 78 91 16 0 16 91 72 89
OHSU24 74 51 20 -3 20 51 40 57
OHSU25 44 -12 -19 -19 0 0 -5 -3
OHSU26 43 51 29 0 20 51 6 51
OHSU27 3 -12 -15 -56 -12 0 -1 0
OHSU28 48 49 12 -1 1 49 1 26
OHSU29 95 44 25 0 4 44 20 45
OHSU30 172 100 23 0 24 100 60 92
OHSU31 55 -2 2 -3 2 11 -8 -8
OHSU32 59 -35 -34 -35 -20 -6 -12 -16
OHSU33 145 62 53 -63 42 62 74 61
OHSU34 12 -3 -74 -74 -1 0 0 -4
OHSU35 110 122 95 -100 95 122 124 143
OHSU36 54 6 12 -3 0 12 3 -10
OHSU37 75 42 13 -1 13 42 19 28
OHSU38 62 62 44 0 44 62 51 59
OHSU39 127 2 -6 -6 -1 9 4 22
OHSU40 46 22 23 -1 22 26 35 32
OHSU41 19 1 -1 -1 0 1 0 0
OHSU42 53 -5 0 -5 0 7 0 0
OHSU43 60 62 44 -3 44 62 64 72
OHSU44 42 12 6 -3 1 12 5 7
OHSU45 15 -9 0 -10 0 0 0 -1
OHSU46 25 3 5 -2 2 5 10 6
OHSU47 45 5 12 -7 -2 12 -9 -7
OHSU48 69 35 2 -1 5 35 22 47
OHSU49 75 14 -4 -8 -1 14 23 -3
OHSU50 27 -24 -5 -24 0 5 -16 -24
OHSU51 57 3 1 -7 1 8 6 9
OHSU52 13 -12 -18 -18 -1 0 6 1
OHSU53 3 -6 -18 -18 -3 0 -8 -3
OHSU54 12 1 -5 -5 0 7 0 -7
OHSU55 30 13 -11 -11 0 13 23 18
OHSU56 24 0 8 -2 0 8 0 8
OHSU57 26 16 15 0 11 16 0 0
OHSU58 10 -2 -31 -31 0 0 0 2
OHSU59 45 8 8 0 7 8 12 10
OHSU60 44 -3 -16 -16 -2 0 4 13
OHSU61 26 5 1 0 0 5 -2 6
OHSU62 23 -4 -13 -13 0 1 0 3
OHSU63 63 -1 -21 -21 0 0 0 0
Average 19.4 5.0 14.8 21.3
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C.4 Routing — OHSU topics, Eval: Av. Prec.
KUNr1 KUNr2 All Results FilterIt-r

Topic #rel score score min med max score
OHSU1 44 0.386 0.431 0.000 0.386 0.716 0.4660
OHSU2 44 0.302 0.299 0.000 0.302 0.547 0.5327
OHSU3 165 0.593 0.603 0.000 0.556 0.682 0.7074
OHSU4 12 0.303 0.296 0.000 0.286 0.684 0.4024
OHSU5 44 0.391 0.386 0.000 0.416 0.654 0.5681
OHSU6 27 0.048 0.057 0.000 0.048 0.118 0.1118
OHSU7 19 0.322 0.338 0.000 0.322 0.681 0.6017
OHSU8 11 0.013 0.015 0.000 0.015 0.124 0.0161
OHSU9 44 0.095 0.081 0.000 0.095 0.495 0.1851
OHSU10 19 0.142 0.146 0.000 0.084 0.154 0.1323
OHSU11 84 0.243 0.249 0.000 0.243 0.524 0.6225
OHSU12 7 0.379 0.309 0.000 0.124 0.379 0.1533
OHSU13 77 0.188 0.203 0.000 0.192 0.362 0.3320
OHSU14 44 0.070 0.058 0.000 0.207 0.576 0.2758
OHSU15 36 0.013 0.010 0.000 0.171 0.282 0.3583
OHSU16 49 0.181 0.209 0.000 0.181 0.383 0.2974
OHSU17 27 0.013 0.012 0.000 0.116 0.317 0.2979
OHSU18 99 0.237 0.185 0.000 0.188 0.344 0.3375
OHSU19 95 0.676 0.676 0.000 0.676 0.791 0.7738
OHSU20 19 0.364 0.348 0.000 0.364 0.615 0.4597
OHSU21 112 0.359 0.310 0.000 0.310 0.380 0.5028
OHSU22 19 0.022 0.017 0.000 0.059 0.439 0.1860
OHSU23 78 0.371 0.392 0.000 0.371 0.813 0.6842
OHSU24 74 0.308 0.344 0.000 0.344 0.600 0.6381
OHSU25 44 0.027 0.031 0.000 0.114 0.176 0.1299
OHSU26 43 0.514 0.496 0.000 0.496 0.776 0.6888
OHSU27 3 0.010 0.010 0.000 0.009 0.185 0.0142
OHSU28 48 0.329 0.361 0.000 0.256 0.532 0.3424
OHSU29 95 0.314 0.303 0.000 0.303 0.534 0.3408
OHSU30 172 0.204 0.230 0.000 0.230 0.441 0.4737
OHSU31 55 0.162 0.131 0.000 0.131 0.352 0.3552
OHSU32 59 0.037 0.026 0.000 0.037 0.234 0.1223
OHSU33 145 0.320 0.312 0.000 0.312 0.510 0.4678
OHSU34 12 0.024 0.011 0.000 0.036 0.099 0.0567
OHSU35 110 0.692 0.598 0.000 0.648 0.748 0.7831
OHSU36 54 0.338 0.333 0.000 0.247 0.431 0.1939
OHSU37 75 0.278 0.280 0.000 0.278 0.533 0.5275
OHSU38 62 0.628 0.624 0.000 0.576 0.726 0.6912
OHSU39 127 0.080 0.078 0.000 0.080 0.234 0.2539
OHSU40 46 0.478 0.459 0.000 0.453 0.561 0.6016
OHSU41 19 0.241 0.269 0.000 0.076 0.269 0.1935
OHSU42 53 0.006 0.006 0.000 0.048 0.243 0.2115
OHSU43 60 0.676 0.679 0.000 0.679 0.833 0.7729
OHSU44 42 0.267 0.207 0.000 0.263 0.364 0.4048
OHSU45 15 0.042 0.039 0.000 0.042 0.133 0.0576
OHSU46 25 0.128 0.129 0.000 0.129 0.478 0.4096
OHSU47 45 0.399 0.392 0.000 0.344 0.399 0.3682
OHSU48 69 0.226 0.260 0.000 0.154 0.574 0.4280
OHSU49 75 0.120 0.111 0.000 0.111 0.381 0.3198
OHSU50 27 0.112 0.118 0.000 0.118 0.301 0.2175
OHSU51 57 0.082 0.070 0.000 0.114 0.541 0.4214
OHSU52 13 0.041 0.028 0.000 0.179 0.309 0.3258
OHSU53 3 0.003 0.002 0.000 0.006 0.170 0.1085
OHSU54 12 0.542 0.556 0.000 0.347 0.556 0.4084
OHSU55 30 0.304 0.348 0.000 0.136 0.458 0.5460
OHSU56 24 0.315 0.255 0.000 0.153 0.322 0.4457
OHSU57 26 0.414 0.415 0.000 0.376 0.510 0.3684
OHSU58 10 0.008 0.008 0.000 0.008 0.517 0.4874
OHSU59 45 0.254 0.232 0.000 0.232 0.542 0.3507
OHSU60 44 0.101 0.117 0.000 0.101 0.266 0.3780
OHSU61 26 0.177 0.190 0.000 0.177 0.382 0.3052
OHSU62 23 0.024 0.039 0.000 0.039 0.306 0.1939
OHSU63 63 0.025 0.029 0.000 0.016 0.112 0.0981
Average 0.237 0.234 0.3731
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Samenvatting

In deze dissertatie worden een aantal nieuwe ideeën gëıntroduceerd aangaande het op-
zoeken van digitale informatie (Information Retrieval). In het bijzonder worden aan twee
belangrijke onderwerpen aandacht besteed:

• Het filteren van informatie – het selecteren van relevante documenten met be-
trekking tot een specifiek kennisgebied uit een dynamische informatie omgeving.

• Het representeren van tekstuele informatie – manieren waarop de informatie bevat
in een document gerepresenteerd kan worden zodat zoekmethoden er doeltreffend
gebruik van kunnen maken.

In hoofdstuk 2 beschrijven wij filtering als een adaptief en tijdsgebonden proces.
Een proces dat, in tegenstelling tot het traditionele doorzoeken van teksten, zowel het
dynamische gedrag als de tijdsgebonden aspecten van die informatie beschouwt. Dit
hoofdstuk beschrijft de theoretische resultaten van experimenteel onderzoek verricht over
de laatste jaren. Geleid door de resultaten van deze experimenten formuleren we de
vereisten voor effectiviteit en efficiëntie van filtering processen. Dit geeft een coherent
beeld op filtering, echter de geformuleerde ideeën laten zich ook toepassen op andere
informatie analyse gebieden waarin tijdsgebonden data een rol spelen. In hoofdstuk 3
onderzoeken we het gebruik van distributies van data over de tijd. We gebruiken hierin
de hypothese dat data die uniform over de tijd verspreid voorkomen de toekomst beter
voorspellen, en daarom meer waardevol zijn. Dit idee is getest gebruik makend van een
nieuwe methode voor term selectie genaamd term occurence uniformity . In hoofstuk 4
introduceren wij de score-distributional (S-D) threshold optimization. Hierin wordt aan
de hand van drempels een beslissing genomen om een document te selecteren of niet. Alle
beschreven ideeën en modellen zijn gëımplementeerd in het prototype FilterIt systeem
gepresenteerd in hoofdstuk 5. Dit systeem heeft zijn waarde, en de haalbaarheid van de
daarin gëımplementeerde ideeën, bewezen in de TREC-9 Filtering Track.

In IR is de meest eenvoudige representatie van een document de verzameling woorden
die het document bevat. In hoofdstuk 6 behandelen wij linguistically motivated indexing
(LMI), een alternatieve representatie van documenten waarin de structuur van de taal
waarin deze geschreven zijn gebruikt wordt. De voorgestelde LMI gaat om met taal
op een coherente en compacte manier zonder een diepgaande syntactische analyse. In
hoofdstuk 7 beschrijven wij experimenteel werk met lingüıstische bronnen en methoden.
Bovendien evalueren wij hier een deel van het voorgestelde LMI.








