DUTH does Probabilities of Relevance at the Legal Track *

Dim P. Papadopoulos

Vicky S. Kalogeiton

Avi Arampatzis

Department of Electrical and Computer Engineering,
Democritus University of Thrace,
Xanthi 67100, Greece.
{dimipapa4,vasikalo, avi}l@ee.duth.gr

Abstract

We participated in the Learning Task of the TREC 2010
Legal Track, focusing solely on estimating probabilities
of relevance. We submitted three automated runs based
on the same tf.idf ranking, produced by the topic narra-
tives and positive-only feedback of the training data in
equal contributions. The runs differ in the way the prob-
abilities of relevance are estimated: (1) DUTHsdtA em-
ployed the Truncated Normal-Exponential model to turn
scores to probabilities. (2) DUTHsdeA did not assume
any specific component score distributions but estimated
those on the scores of training data via Kernel Density
Estimation (KDE) methods. (3) DUTH1rgA used Lo-
gistic Regression with the co-efficients estimated on the
scores of training data. We found that DUTHsdeA and
DUTHI1rgA are greatly affected by biases in the training
set, since they assume that input score data are uniformly
sampled. Also, KDE was found to be very sensitive to its
parameters, influencing greatly the probability estimates.
In these respects, DUTHsdtA was proven to be the most
robust method.

1 Introduction

In this paper, we report our participation in the Learning
Task of the TREC 2010 Legal Track. Task participants
were given a “seed” (or training) set of documents from
a larger collection that had previously been assessed by
TREC as responsive or non-responsive (or—using tradi-
tional IR jargon—relevant or non-relevant) to a legal dis-

*In: Proceedings of the Nineteenth Text REtrieval Conference, 2010.

covery request. Using this information, participants had
(a) to rank the documents in the larger collection from
most likely to least likely to be relevant, and (b) for each
document, to estimate the likelihood of relevance as a
probability. TREC assessed the quality of rankings, as
well as the quality of probability estimates.

This year we focused solely on estimating probabili-
ties of relevance. In Section 2, we talk about the task
setup. The indexing, training, and retrieval methods are
mentioned in Section 3. In Section 4, we describe the
methods for estimating probabilities and their underlying
assumptions. In Section 5, we provide a comparative eval-
uation of the methods in the context of the Learning Task.
Conclusions are drawn in Section 6.

2 Task Setup

In this section, we briefly describe the datasets.
2.1 Test Collection

The Learning Task in the TREC 2010 Legal Track used
the EDRM Enron v2 collection in either XML or PST for-
mats. In the EDRM XML, a document is considered to be
either an email message as a whole, or a particular attach-
ment. Some documents may appear more than once in the
original collection. We used the de-duplicated version of
the text-only portion of XML dataset. This version has a
total number of 685,592 documents.

2.2 Queries and Training Data

TREC provided to the participants a set of eight topics
(200-207), their narrative parts only. Each topic was con-

sidered as an independent query. Also, as already men-
tioned, TREC provided a training set of documents that
had previously been assessed as relevant or non-relevant.
The numbers of relevant and non-relevant documents per
topic are given in Table 1.

Table 1: Original/given seed set

Topic | Relevant | Non-relevant
200 230 620
201 168 523
202 1006 403
203 67 892
204 59 1132
205 333 1506
206 19 336
207 80 511

During the Track, conflicting relevance judgments were
discovered for some documents which appeared both as
relevant and non-relevant. TREC did not provide any
guideline on how to deal with those, so we decided to
take them as relevant. Thus, our numbers of training doc-
uments were effectively those in Table 2.

Table 2: Effective seed set

Topic | Relevant | Non-relevant
200 230 596
201 168 520
202 994 396
203 67 876
204 59 1122
205 333 1496
206 19 323
207 80 492

We note here that the given set of training data may be
biased in unknown ways; this seems to have affected two
of our three runs, as we will later see. Usually, such train-
ing sets are build by the taking the union of top-ranked
documents retrieved by several systems (i.e. known as
pooling), assessed in previous experiments; they are cer-
tainly not uniform samples of the whole collection.

3 Indexing and Retrieval

The EDRM Enron v2 collection was indexed with the
Lemur Toolkit V4.11 and Indri V2.11, using the default
settings that come with these versions, except that we en-
abled the Krovetz stemmer.! For the official runs, we used
the tf.idf retrieval model.

In order to utilize the training set, we used the relevance
feedback option in Lemur. All the feedback algorithms
currently in Lemur assume that all entries in a judgment
file are relevant documents, so we had to remove all the
entries of judged non-relevant documents. We used the
feedback model as well as the initial query (feedback-
PosCoef=1), equally weighted. We added 64 terms to the
initial query (feedbackTermCount=64).

4 Estimating Probabilities of Relevance

We investigated three methods for estimating the proba-
bilities of relevance; the methods are based solely on doc-
ument scores. The first method can be applied with or
without training data, while the other two need training
data. All methods are fully automated, i.e. they do not
need any human intervention.

4.1 The SD Method with Theoretical Distributions

Under the assumption of binary relevance, classic at-
tempts model score distributions (SDs)—on a per-request
basis—as a mixture of two SDs: one for relevant P(s|1)
and the other for non-relevant document scores P(s|0).
Given the two component SDs and their mix weight G,
the probability of relevance of a document given its score
s can be calculated straightforwardly [4, 7]:

_ G P(s|1)
PO = Ghem T a -6 PeN)

ey

Various combinations of theoretical distributions have
been proposed for modeling P(s|1) and P(s|0) since the
early years of IR; for a recent review of the proposed
combinations, we refer the reader to [3]. We settled for
employing the latest, improved normal-exponential model
which uses truncated versions of the component densities
trying to deal with some of the shortcomings of the orig-
inal model [2]. The last two mentioned studies suggest
that normal component for relevant fits best to (a) vector

http://www.lemurproject.org

http://www.lemurproject.org

space or geometrical retrieval models, (b) scoring func-
tions in the form of linear combination of document term
weights, and (c) long queries. The exponential fits best on
the top-end of the non-relevant scores.

Throughout the rest of the paper, we refer to this
method as SDT, i.e. Score-Distributional with Theoreti-
cal distributions, irrespective of the component choices;
our officially-submitted run with normal-exponential is
tagged as DUTHsdtA. The underlying assumption of
SDT is not only that a chosen pair of theoretical distribu-
tions provides a good fit to observed SDs of the retrieval
model at hand, but also that the components indeed repre-
sent binary relevance and not some arbitrary effect. Fur-
thermore, the non-relevant component we chose applies
to the top-end of scores, leaving us with no P(1|s) esti-
mates for lower scores. However, the method provides an
estimate of the number of relevant documents below the
truncation, and using this we simply set P(1|s) uniformly
to that estimate divided by the number of documents be-
low the truncation. In summary, there are 4 parameters to
estimate: the mean and variance of the normal, the mean
of the exponential, and the mix weight G. This can be
done with or without training data.

We recovered the parameters of the component distri-
butions and the mix weight with Expectation Maximiza-
tion (EM) [8] without using the training data. Specifi-
cally, we applied the method as described in [2], using
the Technical Truncation model, with the following dif-
ferences: (1) We truncated the rankings at the top 2% of
the corpus (i.e. 13,712 documents) in order to achieve bet-
ter exponential fits; not having an estimate of the average
query generality, this was an arbitrary choice. (2) We did
a minimum of 8 and a maximum of 64 EM runs, with a
cap at 32 iterations per run; thus we used lower values
which exchange accuracy for speed. (3) In calculating
the x2 of the fits, score data were binned into a minimum
of 8 to a maximum of 32 bins. (4) We rejected fits with
an expected relevant score lower than the expected non-
relevant score in the truncated rankings; this is reasoned
in [1] as a condition for improving parameter estimation.

An important disadvantage of the currently used pa-
rameter estimation method is that it is not using the avail-
able training data. Although EM can be modified to do
that, it is currently unclear to us how to do it with data of
unknown biases.

4.2 The SD Method with Empirical Distributions

We experimented with a new score-distributional method
which needs training data. The advantage of this method
is that it does not assume any specific theoretical distribu-
tions, and it is capable of approximating unknown distri-
butions. The components are deduced, one at a time, with
Kernel Density Estimation (KDE) methods [9] from the
corresponding scores of the training documents. The mix
weight may be estimated from or without training data.

Throughout this paper, we refer to this method as SDE,
i.e. Score-Distributional with Empirical distributions; our
officially-submitted run is DUTHsdeA. A disadvantage of
the method is that KDE needs some score data per com-
ponent, which in general may not be available. Also, de-
pending on the shapes of the estimated densities and the
mix weight, SDE may not result to a monotonic transfor-
mation of scores to probabilities. This implies that rank-
ings are sub-optimal and that they can be improved by
simply re-ranking them in a descending order of the es-
timated probabilities. Rather than reversing the rankings,
randomizing the ‘offending’ score ranges could also be ef-
fective. However, we did something rougher: we forced a
monotonic decline of the probability of relevance in rank-
ings by setting it to the minimum value previously seen as
we go down a ranking.

Kernel density estimation (KDE) is a non-parametric
way of estimating the probability density function of a
random variable; it is a fundamental data-smoothing prob-
lem, where inferences about the population are made
based on a finite data sample. We used a Gaussian ker-
nel and a bandwidth of ¢ /5, where o is the standard de-
viation of a 2% uniform score sample of a query’s results
(i.e. approximately 13,712 scores—we down-sampled for
speed). The bandwidth is a free parameter which exhibits
a strong influence on the resulting estimate.

Using EM, we only recovered the mix weight G of the
two distributions on the whole score range. Again, for
efficiency reasons, we run EM on a 2% uniform sam-
ple from the total distribution and not the whole collec-
tion. As theoretical component distributions in EM, we
plugged in the KDEs of relevant and non-relevant. The
function that provides the probability of relevance is again
Equation 1.

Finally, it should be mentioned that the method as-
sumes that the training data are a uniform sample of the

collection, so that the score densities estimated with KDE
are representative.

4.3 Logistic Regression

Without recovering the component distributions, we
mapped scores to probabilities directly by using the stan-
dard method of Logistic Regression [5] on the scores of
the seed set. We refer to this method as LRG, and our
officially-submitted run is DUTH1rgA.

This approach is non-parametric—that is, it is not de-
pendent on any assumptions about or analysis of score
distributions. However, it is not applicable if there are no
training data, and the coefficients estimated depend heav-
ily on the choice of the training sample [6].

Logistic regression has two coefficients, 51 and 3. In
order to recover them we used once more the training
data. We applied the Newton-Raphson algorithm to cal-
culate maximum likelihood estimates of a simple logistic
regression, using the training data as input. In the end,
each score s was mapped to a probability of relevance ac-
cording to:

_exp(f1 + B2 s)
PO = T e 1 B o)

@)

An obvious problem of the method is that the training
data counts are not representative of the relative density of
relevant to non-relevant in the collection. In order to com-
pensate for this, trying to remove some of the bias, we as-
sumed an extra 100,000 non-relevant documents scoring
at 0 during the estimation of the co-efficients.

Logistic regression predicts the probability of occur-
rence of an event by fitting a logistic curve to the data.
But, this curve is defined on the whole real axis. So, the
tf.idf model used may not be appropriate, and maybe it
would have been better to apply the method on OKAPI
scores since OKAPI scores fall on the whole real axis and
not only to the positive one.

5 Experiments

First, in Table 3, we investigate the quality of our ranking.
Note that we used the same ranking for all three submit-
ted runs. The hypothetical F1 is a measure of the quality
of the ranking, independent of the submitted probability
estimates. It is the F1 that would have been achieved, had
the best cutoff been chosen for the ranking.

We are above median only in 205, which is also very
close to the best result from all participating systems. We
are at the median in 200 and 203. We are below the me-
dian in the rest 5 topics, but nowhere the worst. A hy-
pothetical system with median performance in all topics
would have achieved an average hypothetical F1 of 21.86;
the quality of our ranking is close to this. All in all, we
consider our ranking quality to be median, i.e. a good rep-
resentative of all participating rankings.

In Table 4, we investigate the quality of the R estimates
for all three methods. While, in principle, R can be esti-
mated in a way that is independent of the quality of the un-
derlying ranking, some estimation methods may be influ-
enced by the ranking quality. For example, sdt is known
to perform better on good quality queries or results [3].

For Irg, half the topics are above median, and the other
half are below; 203 has the best R estimate of all partici-
pating runs. Its average accuracy is above this of the hypo-
thetical median system, thus, we can say that Irg performs
better than median. The sde method fails with all top-
ics performing below the median, and 3 of them have the
worst submitted accuracy in estimated K. The sdt method
shows a great variance in its effectiveness: while it works
great for some topics (best estimates in 204 and 206), it
performs below the median in others; 207 is nearly the
worst. Overall, the average R accuracy of sdt is above
this of the hypothetical median system. It is worth men-
tioning that the best two R estimates are on the topics with
the worst ranking quality compared to the other topics in
our ranking.

In Table 5, we investigate the % accuracy of the F1
estimate. F1 is the score that would have been achieved
if the estimates had been relied on selecting the cutoff.
Using the same way of analysis as for the first table, we
can deduce that our three methods present worse results
that a median system for the accuracy of the F1 estimates.
So, we have a kind of good R estimates for Irg and sdt,
but they don’t translate to good F1 estimates.

In Table 6, we investigate the % accuracy of our cut-
offs. The average accuracy of all our methods is below
the median. Irg and sdt are very close to the median but
as far as the sde is concerned, three topics (203, 204, 205)
have the worst submitted accuracy of the K estimates.

In summary, our ranking quality is close to this of a
median system. The Irg and sdt estimate the number of
relevant documents better than a median system, but the

Table 3: Ranking quality.

200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | avg.

hyp.F1 | 89 | 11.6 | 32.1 | 242 | 82 | 514 | 7.6 | 16.7 | 20.08
best 25.8 | 43.0 | 70.6 | 394 | 26.6 | 52.1 | 37.0 | 90.3 —

median | 89 | 14.1 | 38.2 | 24.2 | 10.3 | 47.2 | 129 | 19.1 | 21.86
worst 1.8 1.5 | 45 | 32 | 53 | 180 | 34 | 6.7 —

Table 4: % accuracy of R estimates.

200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 avg.

Irg 145]394 | 27.3 | 91.2 | 40.6 | 29.3 | 5.2 | 78.3 | 40.73

sde 4.1 1219|243] 09 1.3 1.0 | 31| 186 | 940

sdt 154 | 18.1 | 147 | 229 | 994 | 164 | 774 | 9.9 | 34.28

best 75319371933 |91.2|994 | 694 | 774 | 894 —

median | 154 | 282 | 48.8 | 399 | 49.7 | 31.1 | 4.8 | 32.0 | 31.24

worst 09| 08| 20| 09 1.3 10| 03| 72 —

Table 5: % accuracy of the F'1 estimates.

200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 avg.

Irg 82| 13.1 | 236|424 | 153 | 366 | 47 | 159 | 1998

sde 366 | 743 | 336 | 59| 20| 18| 63208 | 22.66

sdt 120 | 721|277 | 324 | 60| 29.6 | 11.0 | 15.5 | 17.68

best 98.8 1974 | 91.4 | 93.9 | 79.5 | 955 | 34.6 | 949 —

median | 12.5 | 19.8 | 23.6 | 29.8 | 153 | 59.0 | 11.3 | 38.1 | 26.18

worst 1.5 13| 25| 24| 20| 18] 04| 29 —

Table 6: % accuracy of the K estimates.

200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 avg.

Irg 18.8 | 17.8 | 12.0 | 534 | 5.7 | 275 1.1 | 30.8 | 20.89

sde 116 | 220 | 393 | 03| 00| 05| 09| 21.1 | 11.97

sdt 262 | 123 | 393 | 282 | 106 | 150 | 52 | 209 | 19.71

best 90.4 | 87.6 | 99.8 | 78.1 | 89.5 | 91.2 | 26.8 | 99.3 —

median | 11.6 | 123 | 32.6 | 37.8 | 15.6 | 424 | 4.7 | 25.7 | 22.84

worst 03| 07| 06| 03| 00| 05| 0.1 1.3 —

sde lags far behind. In the accuracy of F1 estimates, all
methods show a comparable performance which is worse
than a median system. As far as the accuracy of K esti-
mates is concerned, the best of our methods is Irg, with
sdt close behind and both around a median system, but
sde fails again. Overall, we seem to have a problem with
the sde, while both sdt and Irg are competitive; neverthe-
less, in lrg we arbitrarily assumed an extra 100,000 non-
relevant documents scoring at zero, while sdt employs no
arbitrary choices.

6 Conclusions

First, we are not satisfied with the quality of our ranking,
although it seems to be around this of a median system.
We were targeting on using only the feedback model in
training and discard the initial narrative query, but we mis-
interpreted Lemur’s parameters. The ranking quality af-
fects the quality of estimates in two out of our three meth-
ods, namely, the sdt and sde, with the latter being affected
the most. However, we remind the reader that the analy-
sis of results in this paper was based on comparisons to a
hypothetical (non-existent) median system. According to
the official preliminary analysis (Legal Track’s overview
paper in TREC Notebook), our ranking was the 3rd best in
recall at 30%, and the 2nd best in Area Under the receiver
operating characteristic Curve (AUC). AUC is a measure
of the quality of the ranking, independent of the submitted
probability estimates.

Second, sde and Irg must be greatly affected by biases
in the training set; sdt does not use training data. Both
former methods assume training data uniformly sampled
from the collection, which is clearly not the case here.
Our heuristic to remove some of the bias in Irg by assum-
ing 100,000 non-relevant documents scoring at zero does
seem to have helped however. Nevertheless, this was an
arbitrary number.

Third, the KDE methods used in sde was found to be
very sensitive to the choice of bandwidth, influencing
greatly the resulting probability estimates. We will re-
port on these and other issues more extensively in further
work.

References

[1] Avi Arampatzis and Jaap Kamps. Where to stop read-
ing a ranked list? In Proceedings TREC 2008. NIST,
2008.

[2] Avi Arampatzis, Jaap Kamps, and Stephen Robert-
son. Where to stop reading a ranked list? Threshold
optimization using truncated score distributions. In
Proceedings SIGIR’09, pages 524-531. ACM Press,

2009.

Avi Arampatzis and Stephen Robertson. Modeling
score distributions in information retrieval. Informa-
tion Retrieval, 14:26-46, 2011.

[4] Avi Arampatzis and André van Hameren. The score-
distributional threshold optimization for adaptive bi-
nary classification tasks. In Proceedings SIGIR 01,

pages 285-293. ACM Press, 2001.

[5] D.R. Cox. The Analysis of Binary Data. Chapman &

Hall, London, 1970.

Norbert Fuhr, Ulrich Pfeifer, Christoph Bremkamp,
Michael Pollmann, and Chris Buckley. Probabilistic
learning approaches for indexing and retrieval with
the trec-2 collection. In Proceedings TREC 1993.
NIST, 1993.

[7]1 R. Manmatha, Toni M. Rath, and Fangfang Feng.
Modeling score distributions for combining the out-
puts of search engines. In Proceedings SIGIR’01,

pages 267-275. ACM Press, 2001.

[8] Brian D. Ripley and N. L. Hjort. Pattern Recognition
and Neural Networks. Cambridge University Press,

New York, NY, USA, 1995.
[9]

Larry Wasserman. All of Statistics: A Concise Course
in Statistical Inference (Springer Texts in Statistics).

Springer, September 2004.

	1 Introduction
	2 Task Setup
	2.1 Test Collection
	2.2 Queries and Training Data

	3 Indexing and Retrieval
	4 Estimating Probabilities of Relevance
	4.1 The SD Method with Theoretical Distributions
	4.2 The SD Method with Empirical Distributions
	4.3 Logistic Regression

	5 Experiments
	6 Conclusions

